Cognitive Radio Capability Matrix

Definer	Adapts (Intelligently)	Autonomous	Can sense Environment	Transmitter	Receiver	"Aware" Environment	Goal Driven	Learn the Environment	"Aware" Capabilities	Negotiate Waveforms	No interference
FCC	•	•	•	•							
Haykin	•	•	•	•	•	•	•	•			
IEEE 1900.1	•	•	•	•	•						
IEEE USA	•	•	•	•	•	•					•
ITU-R	•	•	•	•	•	•					
Mitola	•	•	•	•	•	•	•	•	•	•	
NTIA	•	•	•	•	•	•	•				
SDRF CRWG	•	•	•	•	•		•				
SDRF SIG	•	•	•	•	•	•	•	•	•		
VT CRWG	•	•	•	•	•	•	•	•	•		

Modeling Cognitive Radios as a Dynamical System

- <u>Dynamical system</u>
 - A system whose change in state is a function of the current state and time
- Autonomous system
 - Not a function of time
 - OK for synchronous timing
- Characteristic function

$$\dot{a} = g(a,t)$$

• Evolution function

$$d: A \times T \to A$$

- First step in analysis of dynamical system
- Describes state as function of time & initial state.
- For simplicity

$$\dot{d} = \underset{j \in N}{\times} d_j = d : A \to A$$

while noting the relevant timing model

Optimality

- In general we assume the existence of some design objective function $J: A \rightarrow \mathbb{R}$
- The desirableness of a network state, a, is the value of J(a).
- In general maximizers of J are unrelated to fixed points of d.

Figure from Fig 2.6 in I. Akbar, "Statistical Analysis of Wireless Systems Using Markov Models," PhD Dissertation, Virginia Tech, January 2007

Potential Games

- Existence of a function (called the potential function, V), that reflects the change in utility seen by a unilaterally deviating player.
- Cognitive radio interpretation:
 - Every time a cognitive radio unilaterally adapts in a way that furthers its own goal, some realvalued function increases.

Potential Game	Relationship ($\forall i \in N, \forall a \in A$)					
Exact (EPG)	$u_i(b_i, a_{-i}) - u_i(a_i, a_{-i}) = V(b_i, a_{-i}) - V(a_i, a_{-i})$					
Weighted (WPG)	$u_{i}\left(b_{i},a_{-i}\right)-u_{i}\left(a_{i},a_{-i}\right)=\ \alpha_{i}\Big[V\left(b_{i},a_{-i}\right)-V\left(a_{i},a_{-i}\right)\Big]$					
Ordinal (OPG)	$u_{i}(b_{i}, a_{-i}) - u_{i}(a_{i}, a_{-i}) > 0 \Leftrightarrow V(b_{i}, a_{-i}) - V(a_{i}, a_{-i}) > 0$					
Generalized Ordinal (GOPG)	$u_i(b_i, a_{-i}) - u_i(a_i, a_{-i}) > 0 \Rightarrow V(b_i, a_{-i}) - V(a_i, a_{-i}) > 0$					
Generalized ε (GεPG)	$u_{i}\left(b_{i},a_{-i}\right)>u_{i}\left(a_{i},a_{-i}\right)+arepsilon_{1}\Rightarrow V\left(b_{i},a_{-i}\right)>V\left(a_{i},a_{-i}\right)+arepsilon_{2}$					

Improvement from Punishment

- Throughput/unit power gains be enforcing a common received power level at a base station
- Punishment by jamming
- Without benefit to deviating, players can operate at lower power level and achieve same throughput

A. MacKenzie and S. Wicker, "Game Theory in Communications: Motivation, Explanation, and Application to Power Control," *Globecom2001*, pp. 821-825.

802.11h: A simple cognitive radio

Observe

Must estimate channel characteristics (TPC)

Must measure spectrum (DFS)

Orientation

- a) Radar present?
- b) In band with satellite??
- c) Bad channel?
- d) Other WLANs?

Decision

- Change frequency
- Change power
- Nothing

Action

Implement decision

<u>Learn</u>

 Not in standard, but most implementations should learn the environment to address intermittent signals

DFS in 802.16h

Drafts of 802.16h defined a generic Dynamic Frequency Selection algorithm which implements observation, decision, action, and learning processes

Very simple implementation

Operation, 2006-03-29

Aggregate Statistics for Peer-to-Peer Network

- Similar algorithm but cognitive decision processes span links
- No coordination between decision processes
- Localized reasoning leads to global optima
- Steady-state performance equivalent to centralized local search