Components Mappings (Task 1.3b)
for the

Tool for Automating Estimation of DSP Resource Statistics for Waveform Components

Submitted under Subcontract FP-19738-430292

An Integrated Tool for SCA Waveform Development, Testing, and Debugging and a Tool for Automated Estimation of DSP Resource Statistics for Waveform Components

Version 1.1
Revision History

	Version
	Summary of Changes
	Date

	0.1 (JN)
	Internal Release
	1/31/08

	1.0 (JN)
	Initial Release
	3/26/08

	1.1 (JN)
	Revised mappings to reflect accounting shift of stack operations from memory to ALU (improves data memory estimate); Viterbi cleaned up
Minor typos
	5/15/08

Table of Contents

2Table of Contents

61
Introduction and Methodology

61.1
Overview

71.2
Pseudo-code Conventions

71.2.1
Use instructions consistent with the least complex DSP

71.2.2
Label instruction lines

71.2.3
Clearly identify assumptions

71.2.4
Register conventions

81.2.5
Reset internal settings before exiting

81.2.6
Group operations that combine together

81.2.7
Attempt to parameterize as much as possible

81.2.8
Comment

91.3
Creating equations

91.4
Modifiers

122
Real Filter

122.1
Pseudocode

132.2
Raw Operations Equation

132.3
Impact of Specialized Instructions

132.4
Synergistic Modifiers

143
Complex Filter

143.1
Pseudocode

163.2
Raw Operations Equation

163.3
Impact of Specialized Instructions

163.4
Synergistic Modifiers

174
Fast Fourier Transform (FFT)

174.1
Pseudocode

204.2
Raw Operations Equation

204.3
Impact of Specialized Instructions

204.4
Synergistic Modifiers

215
LMS Equalizer (real)

215.1
Pseudocode

225.2
Raw Operations Equation

225.3
Impact of Specialized Instructions

225.4
Synergistic Modifiers

236
Taylor Series

236.1
Pseudocode

246.2
Raw Operations Equation

246.3
Impact of Specialized Instructions

246.4
Synergistic Modifiers

257
CORDIC

257.1
Pseudocode

267.2
Raw Operations Equation

267.3
Impact of Specialized Instructions

267.4
Synergistic Modifiers

278
Interleaver

278.1
Pseudocode

288.2
Raw Operations Equation

288.3
Impact of Specialized Instructions

288.4
Synergistic Modifiers

299
DeInterleaver

299.1
Pseudocode

309.2
Raw Operations Equation

309.3
Impact of Specialized Instructions

309.4
Synergistic Modifiers

3110
CIC Filter (Interpolator, M=1)

3110.1
Pseudocode

3310.2
Raw Operations Equation

3310.3
Impact of Specialized Instructions

3310.4
Synergistic Modifiers

3411
CRC Encoder

3411.1
Pseudocode

3511.2
Raw Operations Equation

3511.3
Impact of Specialized Instructions

3511.4
Synergistic Modifiers

3612
CRC Decoder

3612.1
Pseudocode

3712.2
Raw Operations Equation

3712.3
Impact of Specialized Instructions

3712.4
Synergistic Modifiers

3813
Convolutional Encoder

3813.1
Pseudocode

3913.2
Raw Operations Equation

3913.3
Impact of Specialized Instructions

3913.4
Synergistic Modifiers

4014
Viterbi Decoder (rate 1/r, hard decisions, traceback = 32)

4014.1
Pseudocode

4314.2
Raw Operations

4414.2.1
Find Max

4414.2.2
Traceback Unit

4414.2.3
Add Compare Select

4414.2.4
Path Metric Unit

4414.2.5
Hard metric

4514.2.6
Branch Metric Unit

4514.2.7
Main Decoder

4514.2.8
Integrated Equations

4514.3
Impact of Specialized Instructions and Synergistic

4514.3.1
Find Max (N-31)

4614.3.2
Traceback Unit (N-31)

4614.3.3
Add Compare Select (N*num_states)

4614.3.4
Path Metric Unit (N)

4714.3.5
Hard metric (N*num_states*2)

4714.3.6
Branch Metric Unit (N)

4714.3.7
Main Decoder

4814.3.8
Integrated Equations

5015
Polyphase Interpolator

5015.1
Pseudocode

5115.2
Raw Operations

5215.3
Impact of Specialized Instructions

5215.4
Synergistic Modifiers

5316
AM Modulator

5316.1
Pseudocode

5416.2
Raw Operations

5416.3
Impact of Specialized Instructions

5416.4
Synergistic Modifiers

5517
AM Demodulator

5517.1
Pseudocode

5617.2
Raw Operations

5617.3
Impact of Specialized Instructions

5617.4
Synergistic Modifiers

5718
FM Modulator

5718.1
Pseudocode

5818.2
Raw Operations

5818.3
Impact of Specialized Instructions

5818.4
Synergistic Modifiers

5919
FM Demodulator

5919.1
Pseudocode

6019.2
Raw Operations

6019.3
Impact of Specialized Instructions

6019.4
Synergistic Modifiers

6120
BPSK Modulator

6120.1
Pseudocode

6320.2
Raw Operations

6320.3
Impact of Specialized Instructions

6320.4
Synergistic Modifiers

6421
BPSK Demodulator

6421.1
Pseudocode

6521.2
Raw Operations

6521.3
Impact of Specialized Instructions

6521.4
Synergistic Modifiers

6622
BFSK Modulator

6622.1
Pseudocode

6822.2
Raw Operations

6822.3
Impact of Specialized Instructions

6822.4
Synergistic Modifiers

6923
BFSK Demodulator

6923.1
Pseudocode

7023.2
Raw Operations

7023.3
Impact of Specialized Instructions

7023.4
Synergistic Modifiers

7124
16-QAM Modulator

7124.1
Pseudocode

7224.2
Raw Operations

7224.3
Impact of Specialized Instructions

7224.4
Synergistic Modifiers

7325
16-QAM Demodulator

7325.1
Pseudocode

7425.2
Raw Operations

7425.3
Impact of Specialized Instructions

7425.4
Synergistic Modifiers

1 Introduction and Methodology

This document is intended to document the steps used to generate the component files created for the “Tool for Automating Estimation of DSP Resource Statistics for Waveform Components” and to provide enough detail for others to be able to create similar files for their components.

This section gives an overview of the methodology for writing a component file and details on key processes associated with this methodology. This is followed by 22 example applications of this process to a variety of different component implementations.
1.1 Overview

A component file is intended to provide a base equation which details all of the instructions necessary to implement a component with the simplest possible instruction set (generally the ARM RISC set). To create this base equation, pseudo-code for the component is written which reflects an anticipated implementation of the component using this instruction set.

In general different DSPs will include specialized instructions and architectural characteristics which permit multiple of these simple instructions to execute in a single cycle. These include instructions that explicitly combine pairs of instructions (e.g., a MAC is a multiplication and an accumulation), ones that obviate the need for instructions (e.g., a block repeat eliminates the need for loop control instructions) and architectural optimizations (e.g., SIMD, VLIW) that permit multiple instructions to be executed in a single cycle. To model these conditions, additional equations are introduced which modify the original base equation.
Note that implementing a component in a different manner (e.g., an algorithmic optimization) will yield different numbers. The advantage of the approach adopted in this project is that rather than having to do a detailed analysis of a component for each DSP, a single component analysis suffices for all mapped DSPs - a significant time savings (e.g., for 20 DSPs, only 1/20th the time is required). Other advantages of this automated process include ensuring that others can leverage the results without having to duplicate the efforts, the separation of DSP analysis from component analysis means that not all systems engineers need to be an expert on all DSPs (each can be an expert on 1 or 2 and write those files), nor do they have to be an expert on all possible waveform components.

A disadvantage to this approach is that it implicitly assumes every instruction takes a single cycle to execute thereby overlooking latency and delay which can vary significantly from DSP to DSP and instruction to instruction. For well-designed pipelined code, this should have minimal impact on estimations as these should fall outside the loop kernel, but is likely the largest a source of error in the estimation method (and means that it should be expected that fewer cycles are reported than would b actually required.

1.2 Pseudo-code Conventions
The first step in estimating the number of cycles required to implement a component is estimating the number of instructions required to implement the component. To ensure that this is done in a manner that facilitates subsequent steps, the following conventions are used.

1.2.1 Use instructions consistent with the least complex DSP
In general there’s a wide variation in the capabilities of DSPs, but all DSPs will have to implement the same set of operations to implement the same process whether it’s done in a single instruction or 10. To appropriately model this, all pseudo-code instructions should be written in a manner consistent with the least complex DSP. In theory, this could vary from instruction to instruction, but using instructions consistent with the ARM9 instruction set will generally suffice.
Key examples to be aware of include the way conditional branches are taken (e.g., some require a flag be set, some can be done by directly examining the content of a register) as well as explicit instruction combinations (e.g., a MAC).

1.2.2 Label instruction lines

In general, the basic equation is modified by eliminating instructions that on a processor will either be unnecessary or combined with another instruction. However, it will sometimes be the case that multiple modifiers for a processor will eliminate the same line. To identify these situations in the equation formulation step, we will associate the eliminated instruction lines with the modifier so that when a duplication occurs, it can be handled as a “synergistic” modifier. Also a different appellation should be adopted for instructions in each loop. Examples used in the following include labeling lines as 1,2,3,… for instructions that occur outside a loop, L1, L2, L3, … for instructions inside a loop, OL1, OL2,… for instructions in an outer-loop and so on.
1.2.3 Clearly identify assumptions

It is sometimes hard to implement a perfectly generalizable component so some assumptions about a processor’s capabilities must be made (e.g., floating point or 32-bit). When this occurs, make certain that this is clearly identified so it can be built into the component file and thereby excluded from implementation on processors that do not support those assumptions.

1.2.4 Register conventions

While some DSPS (e.g., C54) can directly manipulate elements in its caches in its instructions, this is the exception. Thus before performing an operation on an element in memory, it should be moved to the local register file (e.g., R1-R16). For processors without register files, these extra cycles will be handled via a modifier that eliminates memory accesses.

Many DSPs assign special meanings to specific registers in their register files (e.g., to store the branch back address, input data pointers, output data pointers, for circular buffering). The specific registers should be ignored in this pseudo-code because of the significant variation from DSP to DSP. Also the pseudo-code should ignore limitations on the number of available registers. In practice this would require additional cycles to interface with cache, but this will be both component and DSP-specific. If need be, a specialized component could be written to address a register-constrained condition.

However, code should account for some instruction(s) to put data into an appropriate register when entering or leaving the procedure. Also when calling another procedure, there should also be an instruction to place the address of where the procedure should return to into the appropriate register or stack.
1.2.5 Reset internal settings before exiting
It is a good coding practice that whenever a procedure changes an internal setting, this setting should be reset before exiting the procedure. So, for example, if a circular addressing mode is needed in a particular component, the existing mode should be saved upon entry to the procedure and restored upon exit from the procedure.
1.2.6 Group operations that combine together

To simplify the generation of modifier equations, instructions which group together in known modifiers should be placed sequentially in the pseudo-code. If they cannot be placed sequentially, that is a good indication that the modifier would not apply in that situation.
1.2.7 Attempt to parameterize as much as possible

One of the goals of this tool is to allow for component file reuse as much as possible. For example, there should be no need to redo the analysis when moving from a filter of length 31 to a filter of length 63. Thus when possible, operations which depend on typical parameterizations of the component should be identified and expressed in terms of that parameter.

Even when the original coder is unaware of a parameterization, loop counters will generally serve as a parameterizable value (e.g., filter length). Note that a loop counter is not necessary for an equivalent parameterization. In fact, on processors where loop control is a significant burden, it is a common practice to unroll loops. In such a case, the pseudo-code might include a comment that the following should be repeated r times or some such. Again to help identify exactly what will be repeated (or looped) it is helpful to use meaningful labels.
1.2.8 Comment

Reading assembly code is hard (though not as hard as reading machine code!). To promote the sharing of component files and documentation and to make it possible for the original coder to perform validation weeks, if not merely hours, after writing the pseudo-assembly, the pseudo-code should be commented as much as possible. This also has the additional benefit that if a DSP is added to the suite later that has new capabilities, there may be sufficient context to evaluate where it could be applied to previously generated component files.

Note that lines used for commenting should not be added to the instruction / cycle count.
1.3 Creating equations
The primary goal of performing the component analysis is to generate the set of equations that define the component file. The basic operations equation is defined by counting up the number of instructions required to implement the component, parameterized as appropriate. This count should then be subdivided into memory operations, multiplication operations, and other (ALU) operations. This is needed for the VLIW algorithms to run correctly.

Modifier equations should be generated by reviewing the modifiers listed in Section ‎1.4 and identifying when the requisite conditions are satisfied in the pseudo-code. When this occurs, this should be noted along with the number of instructions that would be eliminated by the presence of that modifier. Each of these modifier equations should be associated with the specific instruction lines that would be eliminated.

Synergistic equations are created by reviewing the list of modifier equations and identifying where modifiers target the same instruction. The synergistic equation should undue the effects of instructions that were double-counted (or triple-counted) by the modifiers.
1.4 Modifiers

Table 1 reproduces the table of modifiers identified in the document entitled “DSP Mappings (Task 1.3a) for the Tool for Automating Estimation of DSP Resource Statistics for Waveform Components.” In general when pseudo-code is identified as exhibiting the operations listed in the middle column, the effect in the right column is applied to generate a modifier equation. Note that in practice many of these instruction modifiers actually capture multiple instructions (e.g., ABSALU is associated with evaluating the absolute value of the result of any ALU operation, and a MAC can be done with either a multiplication and accumulation or a multiplication and negative accumulation) and that different processors will use different terminology for the same effect (e.g., block repeat versus a zero-overhead loop).
Table 1: Instruction / Cycle modifiers identified from DSP analysis

	Instruction Modifier
	Operation
	Modeled Effect

	ABSALU
	A typical ALU instruction (ADD, SUB) is combined with an absolute value operation. Useful for distance calculations and L1 norms.
	Cycles associated with subsequent abs eliminated

	ADDSUB
	The ALU can simultaneously add and subtract two numbers and/or add/subtract two numbers of the native precision. Note, this must be the *same* two numbers, e.g., A+B, A-B
	Consecutive adds/subtracts of the same registers eliminated

	AVG
	The processor implements (A+B)/2
	Eliminates a left shift when following an add

	BDEC
	The processor decrements a counter and branches if the counter is non zero
	Loop control cycles

	BPOS
	The processor branches on the conditions of registers rather than requiring an instruction to set a flag.
	Cycle eliminated for generating branch condition

	BITR
	The processor reverses the bits of a register in a single cycle. Frequently implemented as bit reverse incrementing/arithmetic.
	Cycles for process to bit-reverse an indexed array are eliminated. 1 cycle per array element added back in.

	COND_EXEC
	All instructions are executed conditionally
	Cycles consumed for short control branches are eliminated

	COND_MOV
	All memory/move operations can be executed conditionally
	Cycles consumed for short control branches related to memory are eliminated

	CPX_MPY
	A single cycle complex multiplication. Note that several DSPs have an instruction which implements a complex multiplication (or LMS update or an FIR cycle) but these are multi-cycle instructions. Here, we’re only modeling situations where x_r * y_r – x_i*y_i, x_i*y_r + x_r*y_i. So far, this has also included xyH.
	Complex multiplication cycles (6) reduced to 1 per complex multiplication.

	EXTRACT
	The processor is capable of detailed bit manipulation in a single cycle. This takes various forms in different instructions, but a minimum requirement is the ability to extract out a specified set of bits from a word and then pack them into bytes
	Bit manipulation cycles cut in half.

	GMPY
	The processor supports Galois Field arithmetic (useful in some error correction codes).
	Cycles required to mimic Galois Field arithmetic are eliminated with one cycle per Galois Field arithmetic operation added in.

	INDEX
	Of form *R4[R6]++
	Cycles used to offset a register for a memory operation are eliminated

	MAC
	A single-instruction (functional unit) multiplication and accumulation. Note that when both a multiplier and an ALU are required to implement this, a processor is not considered to exhibit the MAC modifier unless it does not support VLIW
	Accumulate cycles eliminated

	MAX
	The processor does the following (and the reverse for a MIN):

if A>B, A-> dst
	Cycles required to perform move following comparison operation eliminated

	MAX2
	The process performs the MAX operation for two pairs of words of native precision.
	Cycles required to perform both moves and one comparison eliminated

	MEM2
	The data bus width of a processor is such that a single instruction fetches 2 words.
	Memory cycles cut in half (rounded up).

	MEM4
	The data bus width of a processor is such that a single instruction fetches 4 words.
	Memory cycles cut in fourth (rounded up).

	NOREG
	The processor memory maps all registers so there’s no need for an instruction to load registers from memory. Processors which do this, however, tend to clock much slower
	All cycles used to move

	SAD
	Sum of absolute differences.
	Absolute values removed. A special case of ABSALU.

	SIDE_SUM
	Adds up bytes in a word.
	Eliminate cycles of sum of byte-packed words

	VSL
	A process by which a register is shifted left and an input 1 or 0 is appended to the right most bit. Useful for keeping track of paths (saves an instruction) and some bit manipulation operations.
	Cycle saved per path update in

	ZOL
	The processor supports a form of zero-overhead (hardware) looping wherein loop instructions are placed in a hardware buffer and repeated a specified number of times.
	All loop control cycles eliminated (branch, compare, decrement). One cycle added to set loop counter.

2 Real Filter

This component represents the implementation of a real filter without assumptions about the number or symmetry of the taps and computes a single output for a set of inputs. Note that different structures (e.g., block FIR, symmetric FIRs) will be generally coded in a different manner. Because the process will vary from implementation to implementation, all scaling is assumed to occur outside of this function.
2.1 Pseudocode

Requirements: circular

Parameters: N (length)
y=fir(coef, data, length, offset)

//Set circular buffer params
1
(instruction to store previous setting in local register)

2
(instruction to store buff length)

3
(instruction to turn on circ buff)

4
(instruction to set buffer length)

//Move input parameters to local registers

5
R1 = coef (address)
6
R2 = data (address)
7
R2 = data + offset // needed for circular buffering

8
R3 = length (actual #)
//zero accumulator (typically done by subtracting a register from itself)

9
acc = 0

//Note inherent assumption that length > 0

//Note for loops are implemented as conditional branches in assembly

L1
(loop label)
R4 = *R1++ // I don’t know of a DSP that doesn’t support postfix addressing, // but if there is one, a cycle would need to be added here
L2
R5 = *R2++ (

L3
R6 = R5 * R4

L4
acc = acc + R6

L5
R3 = R3 – 1

L6
flag = cmp(R3,0)

L7
if flag (R3==0), branch to loop

//
Move result to output register

10
R_out = acc
//
Restore stuff

11
(instruction to turn reset addressing mode)

12
(instruction to reset buffer length)
13
(instruction to branch back)
2.2 Raw Operations Equation
	Class
	Equation

	Raw
	13+ 7 * N

	Memory
	2*N

	Multiplication
	N

	ALU
	4*N + 13

2.3 Impact of Specialized Instructions
	Instruction
	Impact
	Modifier Equation

	BDEC
	L5, L6 eliminated
	(ALU) -2*N

	BPOS
	L6 eliminated
	(ALU) – N

	ZOL
	1 cycle to set register, L5, L6, L7 eliminated
	(ALU) 1 – 3*N

	MAC
	L4 eliminated
	(ALU) -N

	MEM2
	MEM cut in half
	(MEM) –(2*N)/2

	MEM4
	MEM cut in fourth
	(MEM) -3*(2*N)/4

	NOREG
	MEM eliminated
	(MEM) –(2*N)

2.4 Synergistic Modifiers

	Modifiers
	Impact
	Modifier Equation

	BDEC, ZOL
	L5,L6 added back in
	(ALU) target+2*N

	BPOS, BDEC
	L6 added back in
	(ALU) target+N

	BPOS, ZOL
	L6 added back in
	(ALU) target+N

	BPOS, BDEC, ZOL
	L6 eliminated (again)
	(ALU) target – N

	MEM2, NOREG
	MEM2 effect undone
	(MEM) target + (2*N)/2

	MEM4, NOREG
	MEM4 effect undone
	(MEM) target + 3*(2*N)/4

3 Complex Filter

This component represents the implementation of a complex filter without assumptions about the number or symmetry of the taps and computes a single output for a set of inputs. Note that different structures (e.g., block FIR, symmetric FIRs) will be generally coded in a different manner. Because the process will vary from implementation to implementation, all scaling is assumed to occur outside of this function.

3.1 Pseudocode

Requirements: circular

Parameters: N (length)
y=fir(coef_real, coef_imag, data_real, data_imag, length, offset)

//Set circular buffer params
1
(instruction to store previous setting in local register) (real)

2
(instruction to store previous setting in local register) (imag)

3
(instruction to store previous setting in local register) (real)

4
(instruction to store previous setting in local register) (imag)
5
(instruction to turn on circ buff) (real)

6
(instruction to turn on circ buff) (imag)
7
(instruction to set buffer length) (real)

8
(instruction to set buffer length) (imag)
//Move input parameters to local registers

9
R1 = coef_real (address)
10
R2 = coef_imag (address)

11
R3 = data_real (address)
12
R4 = data_imag (address)
13
R3 = data_real + offset // needed for circular buffering
14
R4 = data_real + offset // needed for circular buffering

15
R5 = length (actual #)

//zero accumulators (typically done by subtracting a register from itself)

16
acc_real = 0
17
acc_imag= 0

//Note inherent assumption that length > 0

//Note for loops are implemented as conditional branches in assembly

L1
(loop label)
R6 = *R1++

L2
R7 = *R2++
L3
R8 = *R3++

L4
R9 = *R4++

//end memory fetches
L5
R10 = R1 * R3
L6
R11 = R2 * R4

L7
R12 = R2 * R3

L8
R13 = R1 * R4

L9
acc_real = acc_real + R10

L10
acc_real = acc_real – R11

L11
acc_imag = acc_imag + R12

L12
acc_imag = acc_imag + R13

//
loop control
L13
R5 = R5 – 1
L14
flag = cmp(R5,0)

L15
if flag (R5!=0), branch to loop

//
Move result to output register

18
store real

19
store imag

//
Restore stuff

20
(instruction to turn reset addressing mode) (real)

21
(instruction to turn reset addressing mode) (imag)

22
(instruction to reset buff) (real)

23
(instruction to reset buff) (imag)
24
(instruction to branch back)
3.2 Raw Operations Equation

	Class
	Equation

	Raw
	24+ 15 * N

	Memory
	4*N

	Multiplication
	4*N

	ALU
	7*N + 24

3.3 Impact of Specialized Instructions

	Instruction
	Impact
	Modifier Equation

	BDEC
	L13-14 eliminated
	(ALU) -2*N

	BPOS
	L14 eliminated
	(ALU) – N

	ZOL
	1 cycle to set register, L13-15 eliminated
	(ALU) 1 – 3*N

	MAC
	L9-12 eliminated
	(ALU) -4*N

	MEM2
	MEM cut in half
	(MEM) –(4*N)/2

	MEM4
	MEM cut in fourth
	(MEM) -3*(4*N)/4

	NOREG
	MEM eliminated
	(MEM) –(4*N)

	CMPX_MPY
	L5-L12 eliminated
	(MULT) -3*N,

(ALU)-4*N

3.4 Synergistic Modifiers

	Modifiers
	Impact
	Modifier Equation

	BDEC, ZOL
	L13,L14 added back in
	(ALU) target+2*N

	BPOS, BDEC
	L14 added back in
	(ALU) target+N

	BPOS, ZOL
	L14 added back in
	(ALU) target+N

	BPOS, BDEC, ZOL
	L14 eliminated (again)
	(ALU) target – N

	MEM2, NOREG
	MEM2 effect undone
	(MEM) target + (4*N)/2

	MEM4, NOREG
	MEM4 effect undone
	(MEM) target + 3*(4*N)/4

	CMPX_MPY, MAC
	L9-12 added back in
	(ALU) target+ 4*N

4 Fast Fourier Transform (FFT)
This component represents the implementation of a computation-in-place radix-2 complex FFT (decimation in time) where all twiddle factors have been precomputed and stored. Note that relevant counters are assumed hard-coded. The first stage of the FFT accesses the input data in bit-reversed fashion, subsequent stages in normal fashion. In practice this means the first pass should be outside of the main loop. For space, this is not actually coded though it is reflected in the equations. Also note that slightly high SNR could be achieved if the FFT input and the output for each stage is scaled by a factor of ½ as opposed to the implicit pre-stage scaling used here. However, this will add 4*log2(N) cycles (right shift and store rather than store).
4.1 Pseudocode

Requirements: bit-reverse addressing, circular addressing
Parameters: N (length) (everything dependent on this is assumed hard coded in)
y=fir(real_data, imag_data, twid_real, twid_imag)

1
R1 = real_data (address)

2
R2 = imag_data (address)

3
R3 = twid_real (address)

4
R4 = twid_imag (address)

//first pass through the input data should be accessed in bit reverse fashion

//after that, should be in normal linear fashion

//that is reflected here for R1, R2

5
(instruction to store previous setting in local register)
6
(instruction to store previous setting in local register)

7
(instruction to turn on bit-reverse add)

8
(instruction to turn on bit-reverse add)
9
(instruction to turn reset addressing mode)

10
(instruction to turn reset addressing mode)

//also there are 3 less instructions used (one less pass through outerloop loop control)

//note that will have a negative effect on modifier equations

11
num_stages = log_2 (N) // outer loop counter (stage), hardcoded
12
data_step = 1

13
num_DFT = N/2 //hard coded
14
offset = 1 //used for many things

// defines # butterflies in DFT

// also 2*offset*DFT_counter is start address for DFT

// e.g., in stage 0, DFT2, start address is 2*1*2 = 4 (bit reversed since stage 0)

//

//**********************

//OUTER LOOP (STAGE LOOP)

OL1
DFT_count = num_DFT //set up middle loop counter
//**********************

//MIDDLE (DFT) LOOP

//Point to twiddle to W^0

ML1
twid_real_reg = R3 // wrap around

ML2
twid_imag_reg = R4 // wrap around
//calculate initial index for butterfly (k*offset)

ML3
temp1 = Num_DFT - DFT_count //(k=0,1,2,…)

ML4
temp = temp1 * offset
ML5
temp = temp << 1
//initial a address

ML5
a_real_reg = temp
ML6
a_imag_reg = temp
//initial b address
ML7
b_real_reg = a_real_reg + offset

ML8
b_imag_reg = a_imag_reg + offset

ML9
butterfly_count = offset //inner loop counter
//**********************
//INNER LOOP

label: INNER LOOP

//START BUTTERFLY

//A FFT butterfly is implemented as

// A = a + twid*b (complex multiplication)

// B = a – twid*n (complex multiplication)

//butterfly (there are some chips where the following is collapsed down to 2-4 cycles, though not included //in this survey. Labeled separately to make it easier to adjust later
B1
twid_real_val = *twid_real_reg

B2
twid_imag_val = *twid_imag_reg

B3
a_real = *a_real_reg

B4
a_imag = *a_imag_reg

B5
b_real = *b_real_reg

B6
b_imag = *b_imag_reg

//complex multiplication b*twid

B7
R1 = b_real*twid_real_val
B8
R2 = b_imag*twid_imag_val
B9
b_mod_real = R1-R2

B10
R1 = b_real*twid_imag

B11
R2 = b_imag*twid_imag

B12
b_mod_imag = R1 + R2

//A
B13
temp_a_real = a_real + b_mod_real
B14
temp_a_imag = a_imag +b_mod_imag

B15
*a_real_reg++ = temp_a_real

B16
*a_real_imag++ = temp_a_imag

//B

B17
temp_b_real = a_real - b_mod_real

B18
temp_b_imag = a_imag -b_mod_imag

B19
*b_real_reg++ = temp_b_real

B20
*b_real_imag++ = temp_b_imag

//END BUTTERFLY

//**********************
IL1
twid_real_reg = twid_real_reg + num_DFTs // wrap around
IL2
twid_real_imag = twid_real_imag + num_DFTs // wrap around
IL3
butterfly_count = butterfly_count – 1
IL4
flag = cmpeq(butterfly_count,0)

IL5
if flag(butterfly _count !=0), branch INNER LOOP

//END INNER LOOP

//**********************

ML10
DFT_count = DFT_count – 1

ML11
flag = cmpeq(DFT_count,0)

ML12
if flag(DFT _count !=0), branch MIDDLE LOOP

//END MIDDLELOOP

//**********************

//resize for next stage
OL2
num_DFT = num_DFT >> 1; //e.g., 8,4,2,1

OL3
offset = offset << 1;

OL4
stage_size = stage_size << 1;

OL5
stage_counter = stage_counter – 1
OL6
flag = cmpeq(stage_counter,0)

OL7
if flag(stage_counter !=0), branch OUTER LOOP

//END OUTER LOOP

//**********************

//
Restore stuff

16
(instruction to branch back)
4.2 Raw Operations Equation

	Class
	Equation

	Raw
	15+ 7*log2(N) + (N-1)* 12+ (20 + 6)*log2(N)

	Memory
	10*log2(N)

	Multiplication
	(N-1)*1 + 4*log2(N)

	ALU
	15+7*log2(N) + (N-1)*11+12*log2(N)

4.3 Impact of Specialized Instructions

	Instruction
	Impact
	Modifier Equation

	BDEC
	OL5,6 ML10,11, IL3,4 eliminated
	(ALU) -2*(log2(N) + (N-1) + log2(N))

	BPOS
	OL6 ML11, IL4 eliminated
	(ALU) – (log2(N) + (N-1) + log2(N))

	ZOL
	OL5-7 ML10-12, IL3-5 eliminated
	(ALU) (log2(N) + (N-1)) – 3* log2(N) + (N-1) + log2(N)

	MEM2
	MEM cut in half
	(MEM) -(10*log2(N))/2

	MEM4
	MEM cut in fourth
	(MEM) -3*(10*log2(N))/4

	NOREG
	MEM eliminated
	(MEM) -(10*log2(N))

	CMPX_MPY
	B7-11 eliminated
	(MULT) -3* log2(N),

(ALU)-4*log2(N)

	MAC
	B9, B12 eliminated
	(ALU) -2*log2(N)

4.4 Synergistic Modifiers

	Modifiers
	Impact
	Modifier Equation

	BDEC, ZOL
	OL5,6 ML10,11, IL3,4 added back in
	(ALU) target+2*(log2(N) + (N-1) + log2(N))

	BPOS, BDEC
	OL6 ML11, IL4 added back in
	(ALU) target+(log2(N) + (N-1) + log2(N))

	BPOS, ZOL
	OL6 ML11, IL4 added back in
	(ALU) target+(log2(N) + (N-1) + log2(N))

	BPOS, BDEC, ZOL
	OL6 ML11, IL4 eliminated (again)
	(ALU) target – (log2(N) + (N-1) + log2(N))

	MEM2, NOREG
	MEM2 effect undone
	(MEM) target + (10*log2(N))/2

	MEM4, NOREG
	MEM4 effect undone
	(MEM) target + 3*(10*log2(N))/4

	CMPX_MPY, MAC
	B9, B12 added back in
	(ALU) target-2*log2(N)

5 LMS Equalizer (real)

This component represents the implementation of a real least-mean-squares equalizer which generates outputs on a symbol by symbol basis and updates the coefficients with the error calculated externally. Because the process will vary from implementation to implementation, all scaling is assumed to occur outside of this function. Note that circular buffering is not generally done with LMS equalization because it is run at the symbol rate rather than at the sample rate.
5.1 Pseudocode

Parameters: N (filter length)
y=lms(coef, data, length, error, step)

//Move input parameters to local registers

1
R1 = coef (address)

2
R2 = data (address)

3
R3 = length (actual #)
4
R4 = error

5
R5 = step

//zero accumulator (typically done by subtracting a register from itself)

6
acc = 0 //an ALU operation
//filtering operation

//Note inherent assumption that length > 0

//Note for loops are implemented as conditional branches in assembly

//(loop1 label)

L1,1
R7 = *R1++
L1,2
R8 = *R2++
L1,3
R9 = R7 * R8
L1,4
acc = acc + R9
L1,5
R3 = R3 – 1

L1,6
flag = cmp(R3,0)

L1,7
if flag (R3!=0), branch to loop1

//adjust coefficients

7
R6 = step * error // no need to calculate this everytime

8
R6 = R6 * acc //(y*err * weight)

9
R1 = coef (address)//reset pointers
10
R2 = data (address)

11
R3 = length
//Loop through and update coefficients

//Note inherent assumption that length > 0

//Note for loops are implemented as conditional branches in assembly

//loop2

L2,1
R7 = *R1 // note no postfix adjustment yet
L2,2
R8 = *R2++ //x[k]

L2,3
R9 = R8 * R6 //x [k] * y* err * weight

L2,4
R7 = R9 + R7 //h[k] + x [k] * y* err * weight

L2,5
*R1++ = R7 // h[k] + x [k] * y*err * weight

L2,6
R3 = R3 – 1

L2,7
flag = cmp(R3,0)

L2,8
if flag (R3!=0), branch to loop2
//
Move result to output register

12
R_out = acc
//
Restore stuff

13
(instruction to branch back)
5.2 Raw Operations Equation

	Class
	Equation

	Raw
	13+ N * 15

	Memory
	5*N

	Multiplication
	2*N + 2

	ALU
	8*N + 11

5.3 Impact of Specialized Instructions

	Instruction
	Impact
	Modifier Equation

	BDEC
	L1,5-6; L2,6-7 eliminated
	(ALU) -4*N

	BPOS
	L1,6; L2,7 eliminated
	(ALU) -2*N

	ZOL
	L1,5-7; L2,6-8 eliminated + setup
	(ALU) 2 - 6*N

	MAC
	L1,4; L2,4 eliminated
	(ALU) -2*N

	MEM2
	MEM cut in half
	(MEM) -(5*N)/2

	MEM4
	MEM cut in fourth
	(MEM) -3*(5*N)/4

	NOREG
	MEM eliminated
	(MEM) -(5*N)

5.4 Synergistic Modifiers

	Modifiers
	Impact
	Modifier Equation

	BDEC, ZOL
	L1,5-6; L2,6-7 added back
	(ALU) target+6*N

	BPOS, BDEC
	L1,6; L2,7 eliminated
	(ALU) target+2*N

	BPOS, ZOL
	L1,6; L2,7 eliminated
	(ALU) target+2*N

	BPOS, BDEC, ZOL
	L1,6; L2,7 eliminated (again)
	(ALU) target – 2*N

	MEM2, NOREG
	MEM2 effect undone
	(MEM) target + (5*N)/2

	MEM4, NOREG
	MEM4 effect undone
	(MEM) target + 3*(5*N)/4

6 Taylor Series

This component represents the implementation of a Taylor series expansion of cos(x). It assumes reciprocals of the factorials are precomputed and stored (with appropriate signs). All scaling is expected to occur outside of this component. Note the # terms refers to the number of terms which should be used in the calculation which means the least term will be approximzately 2*term.
6.1 Pseudocode

Parameters: N (terms)
y=cos_tayl(x, rcp, length)

//Move input parameters to local registers

1
R1 = x (value)
2
R2 = rcp (address)

3
R3 = length (actual #)
//zero accumulator (typically done by subtracting a register from itself)

4
acc = 1 //scaled as need be
//calculate output
//Note inherent assumption that length > 0

//Note for loops are implemented as conditional branches in assembly

L1
(loop label)
R7 = *R2++ //load rcp
L2
R1 = R1*R1 //even exponents
L3
R9 = R1 * R7
L4
R1 = R1*R1 //odd exponent

L5
acc = acc + R9

L6
R3 = R3 – 1

L7
flag = cmp(R3,0)

L8
if flag (R3==0), branch to loop

//
Move result to output register

5
R_out = acc
6
(instruction to branch back)
6.2 Raw Operations Equation

	Class
	Equation

	Raw
	6 + N*8

	Memory
	N

	Multiplication
	3*N

	ALU
	4*N + 6

6.3 Impact of Specialized Instructions

	Instruction
	Impact
	Modifier Equation

	BDEC
	L,6-7 eliminated
	(ALU) -2*N

	BPOS
	L7 eliminated
	(ALU) – N

	ZOL
	L6-8 eliminated + setup
	(ALU) 1 – 3*N

	MAC
	L5 eliminated
	(ALU) -N

	MEM2
	MEM cut in half
	(MEM) -(N)/2

	MEM4
	MEM cut in fourth
	(MEM) -3*(N)/4

	NOREG
	MEM eliminated
	(MEM) -(N)

6.4 Synergistic Modifiers

	Modifiers
	Impact
	Modifier Equation

	BDEC, ZOL
	L6-7 added back
	(ALU) target+2*N

	BPOS, BDEC
	L7 added back
	(ALU) target+N

	BPOS, ZOL
	L7 added back
	(ALU) target+N

	BPOS, BDEC, ZOL
	L7 eliminated (again)
	(ALU) target – N

	MEM2, NOREG
	MEM2 effect undone
	(MEM) target + (N)/2

	MEM4, NOREG
	MEM4 effect undone
	(MEM) target + 3*(N)/4

7 CORDIC

This component represents the implementation of a CORDIC algorithm operating in normal mode (as opposed to hyperbolic or linear modes) where arctangent values have been precomputed and stored. Note K is given by
[image: image1.wmf](

)

0

cos2

N

i

i

K

-

=

=

Õ

 which is assumed to have been precalculated external to this function (resolution is not frequently changed from call to call).
7.1 Pseudocode

Parameters: N (length, i.e., number of iterations)
result=CORDIC(theta, K, length, atan)
//Move input parameters to local registers

1
z = theta (value)
2
R2 = K
3
R3 = length (actual #)
4
R4 = atan (address)

//assign initial values (registers)
4
x = K
5
y = 0

6
iter = 0
//calculate output
//Note inherent assumption that length > 0

//Note for loops are implemented as conditional branches in assembly

L1
(loop label) R5 = RSH (y,iter)

L2
R6 = RSH (x,iter)

L3
R7 = *R4++

L4
flag = cmp(R3,0)

L5
if flag (R3<0), branch to label 2

L5a
x = x – R6
L6a
y = y + R5
L7a
z = z – R7

L7.5a
Branch to label 3

(label2)
L5b
x = x + R6
L6b
y = y – R5
L7b
z = z + R7

(label 3)

L8
R3 = R3 – 1

L9
flag = cmp(R3,0)

L10
if flag (R3!=0), branch to loop

//
Move result to output register

7
store x (cos(theta))
8
store y (sin(theta))
9
(instruction to branch back)
7.2 Raw Operations Equation

	Class
	Equation

	Raw
	9 + N*10.5 (L7.5a only executed half of times)

	Memory
	N

	Multiplication
	0

	ALU
	9.5*N + 9

7.3 Impact of Specialized Instructions

	Instruction
	Impact
	Modifier Equation

	BDEC
	L8,9 eliminated
	(ALU) – 2*N

	BPOS
	L4, L9 eliminated
	(ALU) – 2*N

	ZOL
	L8-10 eliminated + setup
	(ALU) 1 – 3*N

	COND_EXEC
	L7.5 eliminated
	(ALU) -0.5*N

	MEM2
	MEM cut in half
	(MEM) –(N)/2

	MEM4
	MEM cut in fourth
	(MEM) –3*(N)/4

	NOREG
	MEM eliminated
	(MEM) –(N)

7.4 Synergistic Modifiers

	Modifiers
	Impact
	Modifier Equation

	BDEC, ZOL
	L8-9 added back
	(ALU) target+2*N

	BPOS, BDEC
	L9 added back
	(ALU) target+N

	BPOS, ZOL
	L9 added back
	(ALU) target+N

	BPOS, BDEC, ZOL
	L9 eliminated (again)
	(ALU) target - N

	MEM2, NOREG
	MEM2 effect undone
	(MEM) target + (N)/2

	MEM4, NOREG
	MEM4 effect undone
	(MEM) target + 3*(N)/4

8 Interleaver

This component represents the implementation of a block interleaver which is given an input linear array of data, an output linear array of data and a mapping array.

8.1 Pseudocode

Parameters: N (length, i.e., number of iterations)
interleaver(x, y, length, map)
//Move input parameters to local registers

1
R1 = x (address)
2
R2 = y (address)
3
R3 = length (actual #)
4
R4 = map (address)

//Note inherent assumption that length > 0

//Note for loops are implemented as conditional branches in assembly

L1
(loop label) R5 = *R1++ (load x)
L2
R6 = *R4++ (load map – address offset)
L3
R7 = R2 + R6 (offset the address)
L4
*R7 = R5 (store x[k] in y[map])
L5
R3 = R3 – 1

L6
flag = cmp(R3,0)

L7
if flag (R3==0), branch to loop

5
(instruction to branch back)
8.2 Raw Operations Equation

	Class
	Equation

	Raw
	5 + N*7

	Memory
	3*N

	Multiplication
	0

	ALU
	4*N+5

8.3 Impact of Specialized Instructions

	Instruction
	Impact
	Modifier Equation

	BDEC
	L5,6 eliminated
	(ALU) -2*N

	BPOS
	L6 eliminated
	(ALU) – N

	ZOL
	L5-6 eliminated + setup
	(ALU) 1 – 3*N

	INDEX
	L3 eliminated
	(MEM) -N

	MEM2
	MEM cut in half
	(MEM) -(3*N)/2

	MEM4
	MEM cut in fourth
	(MEM) -3*(3*N)/4

	NOREG
	1-4; L1, L4 eliminated
	(MEM) -3*N - 4

8.4 Synergistic Modifiers

	Modifiers
	Impact
	Modifier Equation

	BDEC, ZOL
	L5-6 added back
	(ALU) target+2*N

	BPOS, BDEC
	L6 added back
	(ALU) target+N

	BPOS, ZOL
	L6 added back
	(ALU) target+N

	BPOS, BDEC, ZOL
	L6 eliminated (again)
	(ALU) target – N

	MEM2, NOREG
	MEM2 effect undone
	(MEM) target +(3*N)/2

	MEM4, NOREG
	MEM4 effect undone
	(MEM) target + 3*(3*N)/4

9 DeInterleaver

This component represents the implementation of a block deinterleaver which is given an input linear array of data, an output linear array of data and a mapping array. Uses the same map as for the interleaver, i.e., moves y into x.
9.1 Pseudocode

Parameters: N (length, i.e., number of iterations)
deinterleaver(x, y, length, map)
//Move input parameters to local registers

1
R1 = x (address)
2
R2 = y (address)
3
R3 = length (actual #)
4
R4 = map (address)

//Note inherent assumption that length > 0

//Note for loops are implemented as conditional branches in assembly

L1
(loop label) R6 = *R4++ (load map – address offset)

L2
R7 = R2 + R6 (offset the address)

L4
R5 = *R7 (fetch y[map])

L4
(loop label) *R1++ = R5 (store in x[k])

L5
(label 3) R3 = R3 – 1

L6
flag = cmp(R3,0)

L7
if flag (R3==0), branch to loop

5
(instruction to branch back)
9.2 Raw Operations Equation

	Class
	Equation

	Raw
	5 + N*7

	Memory
	3*N

	Multiplication
	0

	ALU
	4*N+5

9.3 Impact of Specialized Instructions

	Instruction
	Impact
	Modifier Equation

	BDEC
	L5,6 eliminated
	(ALU) -2*N

	BPOS
	L6 eliminated
	(ALU) – N

	ZOL
	L5-6 eliminated + setup
	(ALU) 1 – 3*N

	INDEX
	L3 eliminated
	(MEM) -N

	MEM2
	MEM cut in half
	(MEM) -(3*N)/2

	MEM4
	MEM cut in fourth
	(MEM) –3*(3*N)/4

	NOREG
	1-4; L1, L4 eliminated
	(MEM) –3*N

9.4 Synergistic Modifiers

	Modifiers
	Impact
	Modifier Equation

	BDEC, ZOL
	L5-6 added back
	(ALU) target+2*N

	BPOS, BDEC
	L6 added back
	(ALU) target+N

	BPOS, ZOL
	L6 added back
	(ALU) target+N

	BPOS, BDEC, ZOL
	L6 eliminated (again)
	(ALU) target – N

	MEM2, NOREG
	MEM2 effect undone
	(MEM) target +(3*N)/2

	MEM4, NOREG
	MEM4 effect undone
	(MEM) target + 3*(3*N)/4

10 CIC Filter (Interpolator, M=1)

This component represents the implementation of a block CIC interpolator with differential delay of 1 (M=1 in traditional notation). Note that doing more than M=1 will generally significantly increase the cycle count (gotta calculate address offsets), but that increasing M beyond 1 will not increase cycles (though it does increase memory requirements).

Note: most CIC implementations have their stage loops unrolled (typically length <5 well within typically available # registers) and this is reflected in the implementation. Also note that while we’re still assuming that scaling occurs outside of the CIC filter (this can be quite large for CIC decimators).
10.1 Pseudocode

Parameters: N (block length of input data)

 S (number of stages)

 R (upconversion rate)

cic_interpolator(x, y, length, I_reg, C_reg, R)
//Move input parameters to local registers

1
R1 = x (address)
2
R2 = y (address)
3
R3 = length (actual #)
4
R4 = I_reg (address)

5
R5 = C_reg(address)

6
R6 = R (actual #)

//Note inherent assumption that length > 0

//Note for loops are implemented as conditional branches in assembly

OL1
(loop label) R7 = *R1++ (load x)

//Comb Stage (showing 3 unrolled could be S)

OL2,1
R8 = *R4++ (get stored value stage 1)
OL2,2
R9 = *R4++ (get stored value stage 2)
OL2,3
R10 = *R4++ (get stored value stage 3)
OL3,1
R10 = R9 - R10 (evaluate comb stage 3)
OL3,2
R9 = R8 - R9 (evaluate comb stage 2)
OL3,3
R8 = R7 – R8 (evaluate comb stage 1)
OL4,1
*R4-- = R10 (store comb stage 1)

OL4,2
*R4-- = R9 (store comb stage 2)

OL4,3
*R4-- = R8 (store comb stage 3)

//Integrator Stage (showing 3 unrolled could be S)

//There’s some accumulated zeros from zero-stuffing that can be saved in the first integrator with a less

// general implementation
OL5
R7 = R6

(loop2)
IL1,1
R8 = *R5++ (get stored value stage 1)

IL1,2
R9 = *R5++ (get stored value stage 2)

IL1,3
R11 = *R5++ (get stored value stage 3)

IL2,1
R11 = R11 + R9 (evaluate comb stage 3)

IL2,2
R9 = R8 + R9 (evaluate comb stage 2)

IL2,3
R8 = R10 + R8 (evaluate comb stage 1)

IL3,1
*R5-- = R11 (store comb stage 3)

IL3,2
*R5-- = R9 (store comb stage 2)

IL3,3
*R5-- = R8 (store comb stage 1)

IL4
*R2+= = R11 (store output)
IL5
R7 = R7 – 1

IL6
flag = cmp(R7,0)

IL7
if flag (R7==0), branch to loop2

//outer loop control
OL6
(label 3) R3 = R3 – 1

OL7
flag = cmp(R3,0)

OL8
if flag (R3==0), branch to loop

7
(instruction to branch back)
10.2 Raw Operations Equation

	Class
	Equation

	Raw
	7+ N*(3*S +5) + N*R*(3*S +4)

	Memory
	N*(2*S+1) + N*R(2*S+1)

	Multiplication
	0

	ALU
	7+N*(S+4) + N*R*(S+3)

10.3 Impact of Specialized Instructions

	Instruction
	Impact
	Modifier Equation

	BDEC
	IL5,6, OL6,7 eliminated
	(ALU) -2*N*(1+R)

	BPOS
	IL6, OL7 eliminated
	(ALU) -N*(1+R)

	ZOL
	IL5-7, OL6 eliminated + setup
	(ALU) 1 -3*N*R

	MEM2
	MEM cut in half
	(MEM) –N*S*(1+R) -N/2*(1+R)

	MEM4
	MEM cut in fourth
	(MEM) – 3*(N*(2*S+1) + N*R(2*S+1))/4

	NOREG
	MEM eliminated
	(MEM) -(N*(2*S+1) + N*R(2*S+1))

10.4 Synergistic Modifiers

	Modifiers
	Impact
	Modifier Equation

	BDEC, ZOL
	IL5,6, OL6,7 added back
	(ALU) target+2*N*(1+R)

	BPOS, BDEC
	IL6, OL7 added back
	(ALU) target+N*(1+R)

	BPOS, ZOL
	IL6, OL7 added back
	(ALU) target+N*(1+R)

	BPOS, BDEC, ZOL
	IL6, OL7 eliminated (again)
	(ALU) target - N*(1+R)

	MEM2, NOREG
	MEM2 effect undone
	(MEM) target +N*S*(1+R) +N/2*(1+R)

	MEM4, NOREG
	MEM4 effect undone
	(MEM) target + 3*(N*(2*S+1) + N*R(2*S+1))/4

11 CRC Encoder

This component represents the implementation of a CRC encoder of a message with length M bits with an encoding polynomial of order r where r<=16. The implementation assumes a register width of 16, While this is a straight mapping from a typical hardware implementation (bit-by-bit), a more efficient CRC encoder can be implemented using LUTs when the CRC has a relatively low order (e.g., <=5). However, the LUT approach is impractical for high order encoders (e.g., a CRC with order 16 would need 2^(16+) entries. Note for very short messages, it would more efficient to specify # of bits instead of # of 16-bit words.
 Also note that if program memory were more important than cycles, this could be rewritten to loop instead of unrolling the loop. Also note that the input message should be padded with zeros at the end to effect outputting of the CRC check bits. Finally, the polynomial should include the leading 1
11.1 Pseudocode

Parameters: M (length of message)

remainder = crc_encoder(message, p, length, output,)

//Move input parameters to local registers

1
R1 = message
2
R2 = p (encoding polynomial)
3
R3 = length (#16 bit words)
4
R10 = output

5
R6 = 0 //relax CRC register

6
R7 = 0 //output register

loop1:

L1
R5 = *R1++ //load first 16-bit word

//unrolled 16 times

L1R
R9 = R5&(2^16-1) //left most

L2R
flag = cmpgt(R9,0)

L3R
if flag(R9==0) branch label1

L3.5R
R6 = R6 XOR R2

Label 1:

L4R
R7 <<1

L5R
R9 = R6&1

L6R
R7 = R7 XOR R9

L7R
R5 = R5 << 1

L8R
R6 = R6 >> 1 //update shift register

L2
*R10++ = R7 //output word

//Note inherent assumption that length > 2
L3
R3 = R3 – 1

L4
flag = cmp(R3,0)

L5
if flag (R3==0), branch to loop

7
(instruction to branch back)
11.2 Raw Operations Equation

	Class
	Equation

	Raw
	7 +8.5*M*16 + M*5

	Memory
	2*M

	Multiplication
	0

	ALU
	7+8.5*M*16 + 3*M

11.3 Impact of Specialized Instructions

	Instruction
	Impact
	Modifier Equation

	BDEC
	L3,4 eliminated
	(ALU) -2*M

	BPOS
	L4, L2R eliminated
	(ALU) -M-16*M

	ZOL
	L2-4 eliminated + setup
	(ALU) 1 -3*M

	COND_EXEC
	L3.5R eliminated
	(ALU) -8*M

	EXTRACT
	L5R, L7R eliminated
	(ALU) -2*16*M

	MEM2
	MEM cut in half
	(MEM) – (2*M)/2

	MEM4
	MEM cut in fourth
	(MEM) – 3*(2*M)/4

	NOREG
	MEM eliminated
	(MEM) -(2*M)

11.4 Synergistic Modifiers

	Modifiers
	Impact
	Modifier Equation

	BDEC, ZOL
	L2,3 added back
	(ALU) target+2*M

	BPOS, BDEC
	L3 added back
	(ALU) target+M

	BPOS, ZOL
	L3 added back
	(ALU) target+M

	BPOS, BDEC, ZOL
	L3 eliminated (again)
	(ALU) target - M

	MEM2, NOREG
	MEM2 effect undone
	(MEM) target +(2*M)/2

	MEM4, NOREG
	MEM4 effect undone
	(MEM) target + 3*(2*M)/4

12 CRC Decoder

This component represents the implementation of a CRC decoder of a message with length M bits with an encoding polynomial of order r where r<=16. Note that a CRC decoder is a CRC encoder, except that the input includes check bits (implicit to the output of the encoder above).

12.1 Pseudocode

Parameters: M (length of message)

remainder = crc_encoder(message, p, length, output,)

//Move input parameters to local registers

1
R1 = message
2
R2 = p (encoding polynomial)
3
R3 = length (#16 bit words)

4
R10 = output

5
R6 = 0 //relax CRC register

6
R7 = 0 //output register

loop1:

L1
R5 = *R1++ //load first 16-bit word

//unrolled 16 times

L1R
R9 = R5&(2^16-1) //left most

L2R
flag = cmpgt(R9,0)

L3R
if flag(R9==0) branch label1

L3.5R
R6 = R6 XOR R2

Label 1:

L4R
R7 <<1

L5R
R9 = R6&1

L6R
R7 = R7 XOR R9

L7R
R5 = R5 << 1

L8R
R6 = R6 >> 1 //update shift register

L2
*R10++ = R7 //output word

//Note inherent assumption that length > 2
L3
R3 = R3 – 1

L4
flag = cmp(R3,0)

L5
if flag (R3==0), branch to loop

7
(instruction to branch back)
12.2 Raw Operations Equation

	Class
	Equation

	Raw
	7 +8.5*M*16 + M*5

	Memory
	2*M

	Multiplication
	0

	ALU
	7+8.5*M*16 + 3*M

12.3 Impact of Specialized Instructions

	Instruction
	Impact
	Modifier Equation

	BDEC
	L3,4 eliminated
	(ALU) -2*M

	BPOS
	L4, L2R eliminated
	(ALU) -M-16*M

	ZOL
	L2-4 eliminated + setup
	(ALU) 1 -3*M

	COND_EXEC
	L3.5R eliminated
	(ALU) -8*M

	EXTRACT
	L5R, L7R eliminated
	(ALU) -2*16*M

	MEM2
	MEM cut in half
	(MEM) – (2*M)/2

	MEM4
	MEM cut in fourth
	(MEM) – 3*(2*M)/4

	NOREG
	MEM eliminated
	(MEM) -(2*M)

12.4 Synergistic Modifiers

	Modifiers
	Impact
	Modifier Equation

	BDEC, ZOL
	L2,3 added back
	(ALU) target+2*M

	BPOS, BDEC
	L3 added back
	(ALU) target+M

	BPOS, ZOL
	L3 added back
	(ALU) target+M

	BPOS, BDEC, ZOL
	L3 eliminated (again)
	(ALU) target - M

	MEM2, NOREG
	MEM2 effect undone
	(MEM) target +(2*M)/2

	MEM4, NOREG
	MEM4 effect undone
	(MEM) target + 3*(2*M)/4

13 Convolutional Encoder

This component represents the implementation of a convolutional encoder of a message with length M 16-bits words of constraint length K (K<=16) and rate r (of form 1/r – puncturing can occur in a separate process). The encoding is assumed to be hardcoded to minimize cycles. Note: we’re encoding 16 bits per loop.
13.1 Pseudocode

Parameters:
M (# of 16-bit words in message – round up)

K (constraint length)

taps (total # of XOR taps for encoding polynomials)

r (rate)

crc_encoder(message, length, g0, …, gr)

//Move input parameters to local registers

1
R1 = message (address)
2
R3 = length (#16 bit words)
//Note inherent assumption that length > 2
3
R4 = 0 //buffer is initially empty
//
set pointers to output registers (r lines)

4
Rx1 = g0

5
Rx2 = g1

L1
loop1:
R5 = *R1++ // storing word to be shifted in
//repeat K times (here we’ll assume K = 3)
L21
R6 = R4 >> 1

L22
R2 = R5 & 1 //these three cycles are easily eliminated collapsed to one with good bit control
L23
R2 = R2 << 15

L24
R6 = R6 XOR R2

L31
R7 = R4 >> 2

L32
R2 = R5 & 3 //these three cycles are easily eliminated collapsed to one with good bit control
L33
R2 = R2 << 14

L34
R7 = R7 XOR R2

L41
R8 = R4 >> 3

L42
R2 = R5 & 7 //these three cycles are easily eliminated collapsed to one with good bit control
L43
R2 = R2 << 13

L44
R6 = R6 XOR R2

//repeat r times

//repeat taps -1 times
L51
R9= R8 XOR R6 // g0 = 1+x+x^2
L52
R9 = R9 XOR R5
L53
*g0++ = R9 //store 16-bit result in output word
// note total # operations will be equal to taps
L6
R4 = R5

//loop control

L7
R3= R3 – 1 //decrement count
L8
flag = Compare R3,0

L9
If flag, branch Loop

//Epilog
6
R5 = 0

(effectively repeat the loop except for L1, L6-L9)
7
(instruction to branch back)
13.2 Raw Operations Equation

	Class
	Equation

	Raw
	5 + r + (M-1)*(5+4*K+r*taps) + (4*K+r*taps)

	Memory
	r*(M) + M-1

	Multiplication
	0

	ALU
	5 + r+ M*(K*4+(taps-1)*r) + (M-1)*4

13.3 Impact of Specialized Instructions

	Instruction
	Impact
	Modifier Equation

	BDEC
	L7,L8 eliminated
	(ALU) -2*(M – 1)

	BPOS
	L8 eliminated
	(ALU) –(M-1)

	ZOL
	L7-9 eliminated + setup
	(ALU) -3*(M-1)+1

	EXTRACT
	L22-24 et al collapsed to single cycle
	(ALU) -2*M*K

	MEM2
	MEM operations cut in half
	(MEM) – (r*(M) + M-1)/2

	MEM4
	MEM operations cut to quarter
	(MEM) – 3*(r*(M) + M-1)/4

	NOREG
	MEM operations eliminated
	(MEM) – (r*(M) + M-1)

13.4 Synergistic Modifiers

	Modifiers
	Impact
	Modifier Equation

	BDEC, ZOL
	L7,L8 added back
	(ALU) target +2*(M – 1)

	BPOS, BDEC
	L8 added back
	(ALU) target+(M-1)

	BPOS, ZOL
	L8 added back
	(ALU) target+(M-1)

	BPOS, BDEC, ZOL
	L8 eliminated (again)
	(ALU) target - (M-1)

	MEM2, NOREG
	MEM2 effect undone
	(MEM) target + (r*(M) + M-1)/2

	MEM4, NOREG
	MEM4 effect undone
	(MEM) target + 3*(r*(M) + M-1)/4

14 Viterbi Decoder (rate 1/r, hard decisions, traceback = 32)

This component represents the implementation of a Viterbi decoder with hard decisions for a rate 1/r code without puncturing. The transition matrix (which states go to which states) and the output word matrix (what words would be output by those transitions) should be predefined and passed in and all memory allocations performed externally. For simplicity, the input receive vector is assumed to be grouped into words = of r bits without packing. Note that traceback is dramatically simplified by assuming that the traceback length is less than the register width. Finally note that this should not be used with codes with K>5 (there’s a rule of thumb for traceback that path lengths > 5.8xK for good SNR)
14.1 Pseudocode

Parameters: num_states

N (length > 32)

r
A Viterbi decoder is a very involved piece of software. For any hope of readability, the following conventions were changed to improve readability. First, variable names instead of generic register names were used. Second, portions of the code were separated out into distinct subsections. None of these subsection are intended to be treated as independent functions/procedures and are instead intended to be substituted in where indicated.
=======================

viterbi_decoder(rcv_vect, length, output_vect, transition_matrix, input_output_matrix)

//initialize metrics and paths

VD1
v = base_address

VD2
*v++ = 0 //0 node is initial node

VD3
reg_bank = base_address

VD4
*reg_bank++ = 0 // initial bit is 0

VD5
rcv_reg = rcv_vect
//VD4
output_reg = output_vect // assigned later when needed
VD6
transition_reg = transition_matrix

VD7
output_matrix = input_output_matrix

//***************

// INITIALIZATION LOOP

VD8
tmp = num_states-1

LABEL: INIT_LOOP

INL1
*v++ = MAX_NEG //hardcoded to largest negative

INL2
*reg_bank++ = 0

INL3
tmp = tmp-1

INL4
flag = cmpeq(tmp,0)

INL5
if !flag, branch init_loop

// END INITIALIZATION LOOP

//************

//****************

// MAIN LOOP

VD9
main_ctr = length

LABEL: MAIN_LOOP

MNL1
v = 0 address //repoint to beginning

MNL2
reg_bank = 0 address // repoint to beginning
(Branch Metric Unit) //advances rcv_sample pointer, assigns values to output_metric array

(Path Metric Unit)

//COPY LOOP

//Copy results from Path Metric Unit

MNL3
state_cnt = num_states

LABEL:
COPY_LOOP

CPY L1
tmp_V = *temp_V++

CPY L2
tmp_reg = *temp_reg_bank++

CPY L3
*V++ = tmp_V

CPY L4
*reg_bank++ = tmp_reg

CPY L5
state_cnt = state_cnt – 1

CPY L6
flag = cmpeq(state_cnt,0)

CPY L7
if !flag, branch copyr loop

//END COPY LOOP

MNL4
Flag = cmplt(main_ctr,31) // main_ctr > 31 (full register) ??

MNL5
If Flag, branch MNL6
(Traceback Unit)

MNL6
main_ctr = main_ctr -1

MNL7
flag = cmpeq(main_ctr,0)

MNL8
if !flag, branch init_loop

// MAIN LOOP

//****************
//****************

// FLUSH REGISTERS

FR1
FR_cnt = 31 //one less than reg width
FR2
temp_reg = reg_bank + ind

FR3
temp_val = *temp_reg

LABEL: FR_LOOP

FRL1
temp_val = temp_val << 1

FRL2
temp_val2 = temp_val

FRL3
temp_val2 = tempval2 >> 31
FRL4
temp = temp_val2 & 1

FRL5
*output_vect++ = temp

FRL6
FR_cnt = FR_cnt - 1

FRL7
flag = cmpeq(FR_cnt, 0)

FRL8
if !flag, branch FR_LOOP

VD10
(Instruction to branch back)

Hard_metric(rcv_samp, ideal)

HM1
Tmp = xor(rcv_word,ideal)

HM2
Acc = 0

//repeat #bits per word (cept once)
W1
Acc = acc+tmp&1

W2
Tmp>>1

===============================

BRANCH METRIC UNIT (effectively)

BMU1

state_cnt = num_states //hard coded

BMU2

Rcv_word = *rcv_samp++
BMU3

output_reg = input_output_matrix

//OUTER LOOP (STATES)

LABEL: OUTER_LOOP
//INNER LOOP (UNROLL twice, no actual loop control)

//2x following

BMU IL1

ideal = *output_reg++

(Hard_metric)

BMU IL2

*output_metric++ = Acc
BMU OL
1
state_cnt = state_cnt – 1

BMU OL2
flag = cmpeq(state_cnt,0)

BMU OL3
if !flag, branch outer loop

====================

Add-Compare-Select
ACS1
Temp0 = V1 + M1 //metric for path with new metric V1 and old M1
ACS2
Temp1 = V2 + M2//metric for path with new metric V2 and old M2

ACS3
Flag = cmp(temp0,temp1)

ACS4
If flag branch ACS8 //can’t quite do this with just a MAX

ACS4.1
Rtn_v = temp0

ACS4.2
Rtn_index = 0

ACS5
branch ACS7
ACS6
Rtn_v = temp1

ACS6.1
Rtn_index = 1

ACS7
//really first thing out of ACS – not counted as an actual instruction
===============================

PATH METRIC UNIT (effectively)

PMU1

PMU_cnt = num_states //hard coded
PMU2

offset = 0

LABEL: PMU_LOOP

//GET INDICES FOR METRICS (WHAT NODE BRANCHES INTO WHAT NODE?)

PMU L1

ind1 = *temp_transition_matrix++

PMU L2

ind2 = *temp_transition_matrix--

//GET METRICS FOR LEAD IN NODES

PMU L3

V_temp = V + ind1 //INDEX
PMU L4

V1 = *V_temp
PMU L5

V_temp = V + ind2 //INDEX
PMU L6

V2 = *V_temp

PMU L8

M_temp = output_metrics + ind1
PMU L9

M_temp = output_metrics + offset //INDEX
PMU L10
M1 = *M_temp

PMU L11
M_temp = output_metrics + ind2

PMU L12
M_temp = output_metrics + offset //INDEX
PMU L13
M2 = *M_temp

(ACS CALCULATION)
//PMU L14
*temp_v++ =Rtn_v //actually done in ACS. commented here for clarity

PMU L14
temp_transition_matrix = temp_transition_matrix + Rtn_index

PMU L15
ind2 = *temp_transition_matrix

PMU L16
reg_bank_reg = reg_bank + ind2 // INDEX
PMU L17
reg_bank_val = *reg_bank_reg

PMU L18
reg_bank_val = reg_bank_val << 1 //(zero fill)

PMU L19
reg_bank_val = reg_bank_val OR offset //eliminated with VSL instruction

PMU L20
*temp_reg_bank++ =reg_bank_val

PMU L21
offset = offset XOR 1 // note, this is very much not an add as it’s supposed to toggle the value

PMU L22
PMU_cnt = PMU_cnt - 1

PMU L23
flag = cmpeq(PMU_cnt, 0)

PMU L24
if !flag, branch PMU_LOOP

============================

===============================

TRACEBACK UNIT (effectively)

(FIND_MAX)

TBU1
temp_reg = reg_bank + ind

TBU2
temp_val = *temp_reg

TBU3
temp_val2 = temp_val >> 31 //extract left most bit

TBU4
temp_val = temp_val2 & 1

TBU6
*output_vect++ = temp_val

====================

===================

find_max(int *V_vect)

MAX1
max_cnt = num_states

MAX2
max = 0

MAX3
ind = 0

MAX4
V_vect = V //address

LABEL: MAX_LOOP

MAXL1
tmp = *V_vect++

MAXL2
flag = cmpgt(tmp,max)

MAXL3
if !flag, branch MAXL6

MAXL4
ind = num_states – max_cnt

MAXL5
max = tmp
MAXL6
max_cnt = max_cnt – 1

MAXL7
flag = cmpeq(max_cnt, 0)

MAXL8
if !flag, branch MAX_LOOP
14.2 Raw Operations

To make these estimations readable, the following breaks down the Viterbi mapping operations by module along with the number of times that module is called.

14.2.1 Find Max

	Class
	Equation

	# Called
	N-31

	Raw
	4 + 8*num_states

	Memory
	num_states

	Multiplication
	0

	ALU
	4 + 7*num_states

14.2.2 Traceback Unit

	Class
	Equation

	# Called
	N - 31

	Raw
	6

	Memory
	2

	Multiplication
	0

	ALU
	4

14.2.3 Add Compare Select

	Class
	Equation

	# Called
	N * num_states

	Raw
	4+3*0.5+2*0.5 = 6.5

	Memory
	0

	Multiplication
	0

	ALU
	6.5

14.2.4 Path Metric Unit

	Class
	Equation

	# Called
	N

	Raw
	2+num_states*24

	Memory
	num_states*10

	Multiplication
	0

	ALU
	2+num_stats*14

14.2.5 Hard metric

	Class
	Equation

	# Called
	N*num_states*2

	Raw
	2+rate*2 -1

	Memory
	0

	Multiplication
	0

	ALU
	2+rate*2 -1

14.2.6 Branch Metric Unit

	Class
	Equation

	# Called
	N

	Raw
	3+num_states*(4+3)

	Memory
	1 +num_states*4

	Multiplication
	0

	ALU
	2+num_states*3

14.2.7 Main Decoder

	Class
	Equation

	# Called
	1

	Raw
	13 +(num_states-1)*5 + N*(8 + num_states*7) + 3 + 8*31

	Memory
	3+ (num_states-1)*2 + N*(2 + num_states*4) + 0 + 1*31

	Multiplication
	0

	ALU
	10 + (num_states-1)*3 + N*(6 + num_states*3) + 31*7

14.2.8 Integrated Equations

	Class
	Equation

	Raw
	[13 +(num_states-1)*5 + N*(8 + num_states*7) + 3 + 8*31] + N*[3+num_states*(4+3)] + N*num_states*2*[2+rate*2 -1] + N*[2+num_states*24] + N*num​_states*6.5 + 6*(N-31) + (N-31)*(4+8*num_states)

	Memory
	3+ (num_states-1)*2 + N*(2 + num_states*4) + 1*31 + N*[1 +num_states*4] + N*num_states*2*0 + N * num_states*10 + 0 + (N-31)*2 + (N-31)*num_states

	Multiplication
	0

	ALU
	10 + (num_states-1)*3 + N*(6 + num_states*3) + 31*7 + N*(2+num_states*3) + N*num_states*2*(2+rate*2-1) + N*(2+num_states*14) + N*num_states*6.5 + (N-31)*4 + (N-31)*(4 + 7*num_states)

14.3 Impact of Specialized Instructions and Synergistic
The following describe the effects of the specialized operations except for MEM2, MEM4, and NOREG which are handled in the integrated equations.
14.3.1 Find Max (N-31)
	Instruction
	Impact
	Modifier Equation

	BDEC
	MAXL4,5 eliminated
	(ALU) -(2*num_states)*(N-31)

	BPOS
	MAXL5 eliminated
	(ALU) -num_states*(N-31)

	ZOL
	MAXL4-6 eliminated
	(ALU) -3*num_states*(N-31)

	Modifiers
	Impact
	Modifier Equation

	BDEC, ZOL
	MAXL4,5 added back
	(ALU) target +(2*num_states)*(N-31)

	BPOS, BDEC
	MAXL5 added back
	(ALU) target+ num_states*(N-31)

	BPOS, ZOL
	MAXL5 added back
	(ALU) target+ num_states*(N-31)

	BPOS, BDEC, ZOL
	MAXL,5 eliminated (again)
	(ALU) target - num_states*(N-31)

14.3.2 Traceback Unit (N-31)

	Instruction
	Impact
	Modifier Equation

	INDEX
	TBU1 eliminated
	(ALU) -(N-31)

	EXTRACT
	TBU3 eliminated
	(ALU) -(N-31)

No synergies.

14.3.3 Add Compare Select (N*num_states)
Subtractive Modifiers
	Instruction
	Impact
	Modifier Equation

	BPOS
	PMUL23 eliminated
	(ALU) -N*num_states

No synergies
14.3.4 Path Metric Unit (N)

Subtractive Modifiers
	Instruction
	Impact
	Modifier Equation

	BDEC
	PMUL22,23 eliminated
	(ALU) -N*2*num_states

	BPOS
	PMUL23 eliminated
	(ALU) - N*num_states

	ZOL
	PMUL22-24 eliminated
	(ALU) +N*(1-3*num_states)

	VSL
	PMUL19 eliminated
	(ALU) - N*num_states

	INDEX
	PMUL3,5,9,12,16
	(ALU) -5*N*num_states

Synergistic Modifiers

	Modifiers
	Impact
	Modifier Equation

	BDEC, ZOL
	PMUL22,23 added back
	(ALU) target +2*N*num_states

	BPOS, BDEC
	PMUL23 added back
	(ALU) target+ N*num_states

	BPOS, ZOL
	PMUL23 added back
	(ALU) target+ N*num_states

	BPOS, BDEC, ZOL
	PMUL23 eliminated (again)
	(ALU) target - N*num_states

14.3.5 Hard metric (N*num_states*2)
Subtractive Modifiers
	Instruction
	Impact
	Modifier Equation

	EXTRACT
	W1 eliminated
	(ALU) -N*num_states*2*r

No synergies

14.3.6 Branch Metric Unit (N)
Subtractive Modifiers
	Instruction
	Impact
	Modifier Equation

	BDEC
	BMUOL1,2 eliminated
	(ALU) -N*2*num_states

	BPOS
	BMUOL2 eliminated
	(ALU) -N*num_states

	ZOL
	BMUOL1-3 eliminated
	(ALU) +N*(1-3*num_states)

Synergistic Modifiers

	Modifiers
	Impact
	Modifier Equation

	BDEC, ZOL
	BMUOL1,2 added back
	(ALU) target + N*2*num_states

	BPOS, BDEC
	BMUOL2 added back
	(ALU) target+ N*num_states

	BPOS, ZOL
	BMUOL2 added back
	(ALU) target+ N*num_states

	BPOS, BDEC, ZOL
	BMUOL2 eliminated (again)
	(ALU) target - N*num_states

14.3.7 Main Decoder

Subtractive
	Instruction
	Impact
	Modifier Equation

	BDEC
	INL3,4, MNL6,7, CPYL5,6, FRL6,7 eliminated
	(ALU) -2*(num_states-1) -2*N - 2*N*num_states - 31*2

	BPOS
	INL4, MNL4,7, CPYL6, FRL7 eliminated
	(ALU) - N*(num_states-1) - 2*N - N*num_states - 31

	ZOL
	IN3-5, MNL6-8, CPYL5-7, FRL6-8 eliminated
	(ALU) +(1-3*(num_states-1)) + 1-3*N + N*(1-3*num_states) - 31*3

	EXTRACT
	FRL1-3 eliminated
	(ALU) -3*31

	INDEX
	FR2 eliminated
	(ALU) -1

Synergistic Modifiers

	Modifiers
	Impact
	Modifier Equation

	BDEC, ZOL
	INL3,4, MNL6,7, CPYL5,6, FRL6,7 added back
	(ALU) target + 2*(num_states-1) +2*N + 2*N*num_states + 31*2

	BPOS, BDEC
	INL4, MNL7, CPYL6, FRL7 added back
	(ALU) target+ N*(num_states-1) + N + N*num_states + 31

	BPOS, ZOL
	INL4, MNL7, CPYL6, FRL7 added back
	(ALU) target+ N*(num_states-1) + N +N*num_states + 31

	BPOS, BDEC, ZOL
	INL4, MNL7, CPYL6, FRL7 eliminated again
	(ALU) target - N*(num_states-1) - N - N*num_states - 31

14.3.8 Integrated Equations

	Class
	Equation

	Raw
	13 +(num_states-1)*5 + N*(11 +2 + num_states*(7+7 +24+6.5+ 2*(2+r*2-1))) + 8*31 + (N-31)*(6+4+6*num_states)

	Memory
	7 +(num_states-1)*2 + N*(3 + num_states*(4+4 + 10)) + 1*31+(N-31)*(2+1+num_states)

	Multiplication
	0

	ALU
	6 + (num_states-1)*3 + N*(8 + 2+6.5+num_states*(3+3+14+2*(2+r*2-1))) +31*(7) +(N-31)*(4 + 5+6*num_states)

Subtractive Equations
Note that the impact of these modifiers is described in the preceding and not duplicated here for space considerations.
	Instruction
	Modifier Equation

	BDEC
	(ALU) -(2*num_states)*max((N-31),1)-N*4*num_states -2*(num_states-1) -2*N*(num_states+1) -62

	BPOS
	(ALU) -num_states*max((N-31),1) - 4*N*num_states -N*max((num_states-1),1) - 2*N – 31

	ZOL
	(ALU) -3*num_states*max((N-31),1)-9*N*num_states -3*max((num_states-1),1) - 91

	EXTRACT
	(ALU) -max((N-31),1)-N*num_states*2*r-3*31

	INDEX
	(ALU) -1-5*N*num_states-max((N-31),1)

	VSL
	(ALU) -N*num_states

	MEM2
	(MEM) –(7 +(num_states-1)*2 + N*(3 + num_states*(4+4 + 10)) + 1*31+(N-31)*(2+1+num_states))/2

	MEM4
	(MEM) -3*(7 +(num_states-1)*2 + N*(3 + num_states*(4+4 + 10)) + 1*31+(N-31)*(2+1+num_states))/4

	NOREG
	(MEM) -(7 +(num_states-1)*2 + N*(3 + num_states*(4+4 + 10)) + 1*31+(N-31)*(2+1+num_states))

Synergistic Modifiers

	Modifiers
	Modifier Equation

	BDEC, ZOL
	(ALU) target + 2*(N*max((num_states-1),1) + N + 31 +3*N*num_states +num_states*max((N-31),1))

	BPOS, BDEC
	(ALU) target+ (N*max((num_states-1),1) + N + 31 +3*N*num_states +num_states*max((N-31),1))

	BPOS, ZOL
	(ALU) target+ (N*max((num_states-1),1) + N + 31 +3*N*num_states +num_states*max((N-31),1))

	BPOS, BDEC, ZOL
	(ALU) target- (N*max((num_states-1),1) + N + 31 +3*N*num_states +num_states*max((N-31),1))

	MEM2, NOREG
	(MEM) target + (7 +(num_states-1)*2 + N*(3 + num_states*(4+4 + 10)) + 1*31+(N-31)*(2+1+num_states))/2

	MEM4, NOREG
	(MEM) target +3*(7 +(num_states-1)*2 + N*(3 + num_states*(4+4 + 10)) + 1*31+(N-31)*(2+1+num_states))/4

15 Polyphase Interpolator
This component represents the implementation of a block real polyphase interpolator with upsampling factor r, original filter length N, to be calculated for M input samples. N/r is assumed to be an integer. (If it’s not, the designer might as well use more coefficients for less ripple as it’ll take the same amount of time. However, coefficients can be padded.) Note that coef is the address for the coefficients for the original filter, not the polyphase subfilters. Subfiltering is taken care of automatically.
15.1 Pseudocode

Parameters: M (block length of input data)

 N (filter length)

 R (upconversion rate)

Requires: Circular buffering

y=polyphase_interpolate(coef, data, length, output_array)

//Move input parameters to local registers
1
(instruction to store previous setting in local register)
2
(instruction to turn on circ buff)

3
(instruction to set buffer length)

4
R11 = data
5
R3 = length (actual #)
6
R8 = output_array (address)

//*****************

// block loop

OL1
(outer loop) R2 = data (address) + R5 // block loop
OL2
R7 = r //number of subfilters
OL3
R10 = coef (address) + r //points r above h[0]
//*****************

// filter loop

ML1
(middle loop) R1 = R10– R7 //set up pointer to base of appropriate subfilter
ML2
R2 = R11 //reset data pointer

ML3
acc = 0 //zero accumulator (typically done by subtracting a register from itself)

ML4
R9 = N/r //length of subfilter, hard coded
//*****************

// subfilter loop

IL1
(inner loop) R4 = *R1 //get coefficient p(R10-R7)[k]
IL2
R1 = R1 + N/r – 1 // hard coded value, not two operations // eliminated by indexing
IL3
R5 = *R2++ // note: data steps at normal size

IL4
R6 = R5 * R4

IL5
acc = acc + R6

IL6
R9= R9 – 1 //decrement count

IL7
flag = Compare R9,0

IL8
If flag, branch inner Loop

//******************
ML5
*R8++ = acc //store subfilter result

ML6
R7= R7 – 1 //decrement count
ML7
flag = Compare R7,0

ML8
If flag, branch middle Loop

// end filter loop

//****************

OL4
R11++
//increment data pointer

OL5
R3= R3 – 1 //decrement count
OL6
flag = Compare R3,0

OL7
If flag, branch outer Loop

// end block loop

//****************
//
Restore stuff

7
(instruction to turn reset addressing mode)

8
(instruction to turn reset buffer length)

9
(instruction to branch back)
15.2 Raw Operations

	Class
	Equation

	Raw
	9 + 8*(N/r)*r*M + 8*r*M + 7*M

	Memory
	2*(N/r)*r*M + 1*r*M + 3*M

	Multiplication
	(N/r)*r*M

	ALU
	9+ 5*(N/r)*r*M + 7*r*M + 4*M

15.3 Impact of Specialized Instructions

	Instruction
	Impact
	Modifier Equation

	BDEC
	IL7,8, ML6,7, OL5,6 eliminated
	(ALU) -2*(N*M +r*M +M)

	BPOS
	IL8, ML7, OL6 eliminated
	(ALU) -(N*M +r*M +M)

	ZOL
	IL7-9, ML6-8, OL5-7 eliminated
	(ALU) -3*(N*M +r*M +M)

	MAC
	IL5 eliminated
	(ALU) -N*M

	INDEX
	IL2 eliminated
	(ALU) -N*M

	MEM2
	MEM operations cut in half
	(MEM) -(2*(N/r)*r*M + 1*r*M + 3*M)/2

	MEM4
	MEM operations cut to quarter
	(MEM) - 3*(2*(N/r)*r*M + 1*r*M + 3*M)/4

	NOREG
	MEM operations eliminated
	(MEM) - (2*(N/r)*r*M + 1*r*M + 3*M)

15.4 Synergistic Modifiers

	Modifiers
	Impact
	Modifier Equation

	BDEC, ZOL
	IL7,8, ML6,7, OL5,6 added back
	(ALU) target +2*(N*M +r*M +M)

	BPOS, BDEC
	IL8, ML7, OL6 added back
	(ALU) target+(N*M +r*M +M)

	BPOS, ZOL
	IL8, ML7, OL6 added back
	(ALU) target+(N*M +r*M +M)

	BPOS, BDEC, ZOL
	IL8, ML7, OL6 eliminated (again)
	(ALU) target - (N*M +r*M +M)

	MEM2, NOREG
	MEM2 effect undone
	(MEM) target + (2*(N/r)*r*M + 1*r*M + 3*M)/2

	MEM4, NOREG
	MEM4 effect undone
	(MEM) target 3*(2*(N/r)*r*M + 1*r*M + 3*M)/4

16 AM Modulator

This component represents the implementation of a block AM modulator for DSB-SC AM with a block of length N. The module takes as inputs a pointer to a sine table, an increment factor (to define a carrier frequency), a pointer to a message data block, and an output buffer.
16.1 Pseudocode

Parameters: N (block length of input data)

Requires: Circular buffering

y=AM_modulate(message, sine, increment, offset, output_array, length)

//Move input parameters to local registers
1
(instruction to store previous setting in local register)
2
(instruction to turn on circ buff) // for sine buffer
3
(instruction to set buffer length) // presumably known
4
R1 = message

5
R2 = sine
6
R3 = offset

7
R2 = R2 + R3

8
R3 = increment
9
R4 = length (actual #) //also loop counter
10
R5 = output_array

//*****************

// loop

L1
R6 = *R2 (sine sample)
L2
R2 = R2 + R3
L3
R7 = *R1++ //fetch message

L4
R8 = R6*R7 //modulate

L5
*R5++ = R8 // write to output

L6
R4= R4 – 1 //decrement count
L7
flag = Compare R4,0

L8
If flag, branch Loop
// end block loop

//****************

//
Restore stuff

11
(instruction to turn reset addressing mode)

12
(instruction to turn reset buffer length)

13
(instruction to branch back)
16.2 Raw Operations

	Class
	Equation

	Raw
	13 + 8*N

	Memory
	3*N

	Multiplication
	N

	ALU
	13 + 4*N

16.3 Impact of Specialized Instructions

	Instruction
	Impact
	Modifier Equation

	BDEC
	L6,7 eliminated
	(ALU) -2*N

	BPOS
	L7 eliminated
	(ALU) -N

	ZOL
	L6-8 eliminated
	(ALU) 1-3*N

	MAC
	L5 eliminated
	(ALU) –N

	INDEX
	L2 eliminated
	(ALU) –N

	MEM2
	MEM operations cut in half
	(MEM) – (3*N)/2

	MEM4
	MEM operations cut to quarter
	(MEM) – 3*(3*N)/4

	NOREG
	MEM operations eliminated
	(MEM) – 3*N

16.4 Synergistic Modifiers

	Modifiers
	Impact
	Modifier Equation

	BDEC, ZOL
	L6,7 added back
	(ALU) target + 2*N

	BPOS, BDEC
	L7 added back
	(ALU) target + N

	BPOS, ZOL
	L7 added back
	(ALU) target + N

	BPOS, BDEC, ZOL
	L7 eliminated (again)
	(ALU) target - N

	MEM2, NOREG
	MEM2 effect undone
	(MEM) target + (3*N)/2

	MEM4, NOREG
	MEM4 effect undone
	(MEM) target + 3*(3*N)/4

17 AM Demodulator

This component represents the implementation of a simple Costas-loop PLL for DSB-SC AM. The module takes as inputs a pointer to a sin/cos function, a phase accumulator, I and Q branch accumulators, and an output_array, and a message data block. All low-pass filters are implemented as integrators. Note a slightly different structure is needed for samples generated from a complex ADC.
17.1 Pseudocode

Parameters: N (block length of input data)

Ovsp_factor (ratio of carrier to sampling rate)

C cycles to call sin function

y=AM_demodulate(message, sin_function, phase_acc, phase_inc, I_acc, Q_acc, output_array, length)

//Move input parameters to local registers
1
R1 = message

2
R2 = sin_function // function to call
//
R3 = sin_val

//
R4 = cos_val

3
R5 = length (actual #) //also loop counter

4
R6 = output

5
R7 = phase_acc
6
R8 = I_acc

7
R9 = Q_acc

8
R14 = phase_inc

//*****************

// loop

L1
R6 = *R1++
//
Generate
L2
(write R7 to appropriate function register)
LC
call sin_function // puts sin_val + cos_val into R3, and R4 (branch R2)
L3
R10 = R4*R1 //
Generate I branch
L4
R8 = R8 + R10 // LPF acc
L5
R11 = R3*r1 //
Generate Q branch

L6
R9 = R9 + R11 // LPF acc
L7
*R6++ = R8 //output I branch LPF as message
L8
R12 = R8*R9 //Generate error term

L9
R7 = R7 + R12 // LPF error term acc
L10
R13 = R7 + R14 //phase_inc

L11
flag = cmp(R13, (value for 2pi)

L12
if flag (R13 < 2pi) branch L14
L13.25
R13=R13 – (value for 2pi) //assume oversampling factor of 4 for labeling purposes
L14
R5= R5 – 1 //decrement bit count
L15
flag = Compare R5,0

L16
If flag, branch Loop

// end block loop

//****************

//
Restore stuff

9
(instruction to store I_acc)
10
(instruction to store Q_acc)

11
(instruction to store phase)

12
(instruction to branch back)
17.2 Raw Operations

	Class
	Equation

	Raw
	11+ N*15 + N/ Ovsp_factor + C*N

	Memory
	2*N

	Multiplication
	3*N

	ALU
	11+ 10*N + N/Ovsp_factor

	Function
	N*C (doesn’t get hit by VLIW or SIMD)

17.3 Impact of Specialized Instructions

	Instruction
	Impact
	Modifier Equation

	BDEC
	L14,15 eliminated
	(ALU) -2*N

	BPOS
	L15 eliminated (no good way to eliminate L12)
	(ALU) -N

	ZOL
	L14-16 eliminated
	(ALU) 1-3*N

	MAC
	L4,6,9 eliminated
	(ALU) – 3*N

	COND_EXEC
	L13.25 eliminated
	(ALU) –N/Ovsp_factor

	MEM2
	MEM operations cut in half
	(MEM) – (2*N)/2

	MEM4
	MEM operations cut to quarter
	(MEM) – 3*(2*N)/4

	NOREG
	MEM operations eliminated
	(MEM) – (2*N)

17.4 Synergistic Modifiers

	Modifiers
	Impact
	Modifier Equation

	BDEC, ZOL
	L14,15 added back
	(ALU) target + 2*N

	BPOS, BDEC
	L15 added back
	(ALU) target + N

	BPOS, ZOL
	L15 added back
	(ALU) target + N

	BPOS, BDEC, ZOL
	L15 eliminated (again)
	(ALU) target - N

	MEM2, NOREG
	MEM2 effect undone
	(MEM) target +(2*N)/2

	MEM4, NOREG
	MEM4 effect undone
	(MEM) target +3*(2*N)/4

18 FM Modulator

This component represents the implementation of a block FM modulator with a block of length N. The module takes as inputs a pointer to a sine table, an increment factor (to define a carrier frequency), a pointer to a message data block, and an output buffer. The frequency deviation constant is built in rather than being passed in (difference of a cycle). Note that in practical implementations, this would be coupled with a pre-emphasis filter (which adds gain at higher frequencies relative to lower frequencies). Also note that the increment here refers to the phase step for the carrier.
18.1 Pseudocode

Parameters:
N (block length of input data)

Ovsp_factor (ratio of carrier to sampling rate)
C: trig function time

y=FM_modulate(message, sin_function, message_acc, phase_inc, output_array, length)
//Move input parameters to local registers
1
R1 = message

2
R2 = sine_function
3
R3 = message_acc
4
R5 = phase_inc

5
R6 = length (actual #) //also loop counter

6
R7 = output_array

//*****************

// loop

L1
R8 = *R1++ //get message value

L2
R3 = R3 + R8 //accumulate message // in the current form this should be forced to have zero DC // bias, otherwise some extra cycles will be needed to make the abs of this value < 2pi
L3
R4 = R3 * scale // multiply by frequency deviation constant
L4
R4 = R4 + phase_inc //not an accumulate (could be done as a MAC, but then accumulator would

 // have to be reset every time through)
L5
flag = Compare R4 < (value for 2 pi)

L6
If flag, branch L7
L6.25
R4 = R4 – (value for 2 pi)

//
Generate modulated

L7
(write R4 to appropriate function register)
LC
call sin_function // puts sin_val into R9
L8
*R7++ = R9 //write output
L9
R6 = R6 – 1 //decrement block count
L10
flag = Compare R6,0

L11
If flag, branch Loop

//****************

//
Restore stuff

7
(store message_acc)

8
(nstruction to branch back)
18.2 Raw Operations

	Class
	Equation

	Raw
	8+ N*11 + N/ Ovsp_factor + C*N

	Memory
	2*N

	Multiplication
	N

	ALU
	8+ 9*N + N/Ovsp_factor

	Function
	N*C (doesn’t get hit by VLIW or SIMD)

18.3 Impact of Specialized Instructions

	Instruction
	Impact
	Modifier Equation

	BDEC
	L9,10 eliminated
	(ALU) -2*N

	BPOS
	L10 eliminated (no good way to eliminate L6)
	(ALU) -N

	ZOL
	L9-11 eliminated
	(ALU) 1-3*N

	COND_EXEC
	L6.25 eliminated
	(ALU) -N/Ovsp_factor

	MEM2
	MEM operations cut in half
	(MEM) - (2*N)/2

	MEM4
	MEM operations cut to quarter
	(MEM) - 3*(2*N)/4

	NOREG
	MEM operations eliminated
	(MEM) - (2*N)

18.4 Synergistic Modifiers

	Modifiers
	Impact
	Modifier Equation

	BDEC, ZOL
	L9,10 added back
	(ALU) target + 2*N

	BPOS, BDEC
	L10 added back
	(ALU) target + N

	BPOS, ZOL
	L10 added back
	(ALU) target + N

	BPOS, BDEC, ZOL
	L10 eliminated (again)
	(ALU) target - N

	MEM2, NOREG
	MEM2 effect undone
	(MEM) target + (2*N)/2

	MEM4, NOREG
	MEM4 effect undone
	(MEM) target +3*(2*N)/4

19 FM Demodulator

This component represents the implementation of a block FM demodulator with a block of length N. The module takes as inputs a pointer to an arctangent function, I and Q samples, stored loop and phase accumulators, length, and the output array. Note that complex input samples could possibly be created via an external Hilbert transform or from a complex ADC.

19.1 Pseudocode

Parameters:
N (block length of input data)

Ovsp_factor (ratio of carrier to sampling rate)
C: trig function time

FM_demodulate(sig_I, sig_Q, arctan_function, loop_acc, phase_acc, output_array, length, sin_function)

//Move input parameters to local registers
1
R1 = sig_I

2
R2 = sig_Q

3
R3 = length

4
R4 = output_array

5
R5 = phase_acc

6
R6 = loop_acc
//*****************

// loop

//generate appropriate real, imag from

L1
(push phase_acc to appropriate register for sin_cos call)

LC1
sin_cos_function // function to call, put in R7,R8
//complex multiplication

//
I

L2
R9 = R1 * R7

L3
R11 = R2*R8

L4
R9 = R9 – R11

//
Q

L5
R10 = R2 * R7

L6
R11 = R1 * R8

L7
R10 = R10 + R11

L8
(push R9 to appropriate register for atan call)

L9
(push R10 to appropriate register for atan call)

LC2
atan_function (assume ends up in R7)

L10
R8 = R7 * loop_constant //needed to tweak loop BW

L11
R6 = R6 + R8//accumulate loop
L12
R7 = R7 + R6 //actual output

L13
*R4++ = R7

//phase branch

L14
R8 = R7 * a different constant
L15
R5 = R5 + R8 //phase accumulate

L16
R5 = R5 + hard_code_carrier_step

L17
flag = Compare R5 < (value for 2 pi)

L18
If flag, branch L19
L18.25
R5 = R5 – (value for 2 pi)

L19
R3 = R3 – 1 //decrement block count
L20
flag = Compare R3,0

L21
If flag, branch Loop

// end block loop

//****************

//
Restore stuff

7
(instruction to store phase_acc)

8
(instruction to store loop_acc)

9
(instruction to branch back)
19.2 Raw Operations

	Class
	Equation

	Raw
	9+ N*(21+C1+C2) + N/ Ovsp_factor

	Memory
	4*N

	Multiplication
	6*N

	ALU
	9+ 11*N + N/Ovsp_factor

	Function
	N*(C1+C2) (doesn’t get hit by VLIW or SIMD)

19.3 Impact of Specialized Instructions

	Instruction
	Impact
	Modifier Equation

	BDEC
	L19,20 eliminated
	(ALU) -2*N

	BPOS
	L20 eliminated (no good way to eliminate L6)
	(ALU) -N

	ZOL
	L19-21 eliminated
	(ALU) 1-3*N

	MAC
	L4,7,11,15
	(ALU) – 4*N

	COND_EXEC
	L18.25 eliminated
	(ALU) –N/Ovsp_factor

	MEM2
	MEM operations cut in half
	(MEM) – (4*N)/2

	MEM4
	MEM operations cut to quarter
	(MEM) – 3*(4*N)/4

	NOREG
	MEM operations eliminated
	(MEM) – (4*N)

19.4 Synergistic Modifiers

	Modifiers
	Impact
	Modifier Equation

	BDEC, ZOL
	L19,20 added back
	(ALU) target + 2*N

	BPOS, BDEC
	L20 added back
	(ALU) target + N

	BPOS, ZOL
	L20 added back
	(ALU) target + N

	BPOS, BDEC, ZOL
	L20 eliminated (again)
	(ALU) target - N

	MEM2, NOREG
	MEM2 effect undone
	(MEM) target + (4*N)/2

	MEM4, NOREG
	MEM4 effect undone
	(MEM) target +3*(4*N)/4

20 BPSK Modulator

This component represents the implementation of a block BPSK sine wave modulator. T modulates N 16-bit words with M samples per symbol. Sine values are generated by stepping through a sine table and phase shifts accomplished by stepping half way through the sine table. To simplify the implementation, the sine wave buffer is set up for circular addressing.
20.1 Pseudocode

Parameters: N (number input words – 16-bit)

 M (samples / symbol)

Requires: Circular buffering

BPSK_mod(word_ptr, sine_table, output_buffer, increment)
//Move input parameters to local registers
1
(instruction to store previous settings)

2
(instruction to store pervious settings)
3
(instruction to turn on circ buff) (for sine_table)
4
(instruction to set buffer length)

5
R1 = word_ptr
6
R2 = sine_table

7
R3 = output_buffer

8
R4 = N
9
R5 = increment //(defines frequency)

10
R6 = 0 //used to store old bit
//*****************

// word loop

OL1
(outer loop) R7 = *R1++ //fetch word
OL2
R8= 16 // set bit counter
//*****************

// bit loop

ML1
R9 = R7 &1
ML2
R7 = R7 >> 1

ML3
R10 = CMPEQ (R9, R6)

ML4
if !R10 branch ML6
ML5
R2 = R2 + pi (equivalent in index)

ML6
R11 = M
ML7
R6 = R9

//*****************

// sine loop

IL1
R12 = *R2

IL2
R2 = R2 + R5 //indexed addressing
IL3
*R3++ = R12

IL4
R11= R11 – 1 //decrement bit count
IL5
flag = Compare R11,0

IL6
If flag, branch sine Loop

// END SINE LOOP

//*******************

ML8
R8= R8 – 1 //decrement bit count
ML9
flag = Compare R8,0

ML10
If flag, branch bit Loop

// END BIT LOOP

//*******************

OL3
R4= R4 – 1 //decrement word count
OL4
flag = Compare R4,0

OL5
If flag, branch word Loop

// END WORD LOOP

//*******************

//Restore stuff

11
(instruction to reset addressing mode)

12
(instruction to reset buffer settings)
13
(instruction to branch back)
20.2 Raw Operations

	Class
	Equation

	Raw
	13 + 6*M*16*N + 16*N*10 + 5*N

	Memory
	2*M*16*N+N

	Multiplication
	0

	ALU
	13+ 4*M*16*N + 16*N*10+4*N

20.3 Impact of Specialized Instructions

	Instruction
	Impact
	Modifier Equation

	BDEC
	OL3,4, ML9,10, IL5,6 eliminated
	(ALU) -2*(M*16*N + 16*N+N)

	BPOS
	OL4, ML10, IL6 eliminated
	(ALU) -(M*16*N + 16*N+N)

	ZOL
	L19-21 eliminated
	(ALU) -3*(M*16*N + 16*N+N)

	EXTRACT
	ML2 eliminated
	(ALU) -16*N

	INDEX
	IL2 eliminated
	(ALU) -M*16*N

	MEM2
	MEM operations cut in half
	(MEM) - (2*M*16*N+N)/2

	MEM4
	MEM operations cut to quarter
	(MEM) - 3*(2*M*16*N+N)/4

	NOREG
	MEM operations eliminated
	(MEM) - (2*M*16*N+N)

20.4 Synergistic Modifiers

	Modifiers
	Impact
	Modifier Equation

	BDEC, ZOL
	OL3,4, ML9,10, IL5,6 added back
	(ALU) target + 2*(M*16*N + 16*N+N)

	BPOS, BDEC
	OL4, ML10, IL6 added back
	(ALU) target + (M*16*N + 16*N+N)

	BPOS, ZOL
	OL4, ML10, IL6 added back
	(ALU) target + (M*16*N + 16*N+N)

	BPOS, BDEC, ZOL
	OL4, ML10, IL6 eliminated (again)
	(ALU) target - (M*16*N + 16*N+N)

	MEM2, NOREG
	MEM2 effect undone
	(MEM) target + (2*M*16*N+N)/2

	MEM4, NOREG
	MEM4 effect undone
	(MEM) target + 3*(2*M*16*N+N)/4

21 BPSK Demodulator

This component represents the implementation of a block BPSK demodulator. Specifically, it maps signal levels (presumably from the output of a symbol-synchronization process) to bits and packs them into 16-bit words. Note that this block does not do either symbol or carrier synchronization. For high SNR environments, the AM demodulator can be used to implement a BPSK PLL.
21.1 Pseudocode

Parameters: N (number input samples – assumed to be divisible by 16)

BPSK_demod(input_data, output_buffer, N)
//Move input parameters to local registers
1
R1 = input_data
2
R2 = output_buffer

3
R3 = N
4
R4 = 16
5
R5 = 0
6
R6 = 2^15 (1000 0000 0000 0000)
//*****************

// sample
L1
(loop) R7 = *R2++ //fetch sample
L2
if R7<0 branch L4

L2,5
R5 = R5 XOR R6 //should happen half the time
L3
R6 = R6 >> 1 //used to set where inputs go in (0 fill)
L4
R4 = R4-- //decrement bit counter
L5
flag = cmpgt (R4,0) //note that using conditional execution/moving of the following would actually

// ADD cycles because the instructions would be fetched every time instead of just once

L6
if flag (R4 >0), branch L11

L6.1
*R2++ = R5 //write filled word happens once every 16 passes
L6.2
R4 = 16 // reset bit counter

L6.3
R6 = 2^15
L7
R3= R3 – 1 //decrement sample count
L8
flag = cmpgt R3,0

L9
If flag (R3>0), branch Loop

7
(instruction to branch back)
21.2 Raw Operations

	Class
	Equation

	Raw
	7 + N*(9+0.5+3/16)

	Memory
	N*(1+1/16)

	Multiplication
	0

	ALU
	7 + N*(8+0.5+2/16)

21.3 Impact of Specialized Instructions

	Instruction
	Impact
	Modifier Equation

	BDEC
	L7,8 eliminated
	(ALU) -2*N

	BPOS
	L5,8 eliminated
	(ALU) –2*N

	ZOL
	L7-9 eliminated
	(ALU) 1-3*N

	COND_EXEC
	L2.5 eliminated
	(ALU) -0.5*N

	MEM2
	MEM operations cut in half
	(MEM) – (N*(1+1/16))/2

	MEM4
	MEM operations cut to quarter
	(MEM) – 3*(N*(1+1/16))/4

	NOREG
	MEM operations eliminated
	(MEM) – (N*(1+1/16))

21.4 Synergistic Modifiers

	Modifiers
	Impact
	Modifier Equation

	BDEC, ZOL
	L7,8 added back
	(ALU) target + 2*N

	BPOS, BDEC
	L8 added back
	(ALU) target + N

	BPOS, ZOL
	L8 added back
	(ALU) target + N

	BPOS, BDEC, ZOL
	L8 eliminated (again)
	(ALU) target - N

	MEM2, NOREG
	MEM2 effect undone
	(MEM) target + (N*(1+1/16))/2

	MEM4, NOREG
	MEM4 effect undone
	(MEM) target + 3*(N*(1+1/16))4

22 BFSK Modulator

This component represents the implementation of a block binary frequency shift keying (BFSK) modulator leveraging a sine lookup table with two different increment offsets (corresponding to two different frequencies). Note that this approach eliminates the need for any special relationship between symbol length and encoding frequencies because there are no abrupt phase transition between symbols. The block length is N 16-bit words with FSK symbols with M samples. M is assumed to be hardcoded (though this is not too important).
22.1 Pseudocode

Parameters: N (# 16 bit words to encode)

 M (symbol length)

Requires: Circular buffering (for wrap around in sine table)
BFSK_encode(word_ptr, sine_table, output_buffer, increment1, increment2, N)

//Move input parameters to local registers
1
(instruction to store previous settings)

2
(instruction to store pervious settings)
3
(instruction to turn on circ buff) (for sine_table)
4
(instruction to set buffer length)

5
R1 = word_ptr
6
R2 = sine_table

7
R3 = output_buffer

8
R4 = N
9
R5 = increment1 //(defines frequency 1)
10
R14 = increment2 //(defines frequency 2)

//*****************

// word loop

OL1
(outer loop) R7 = *R1++ //fetch word

OL2
R8= 16 // set bit counter

//*****************

// bit loop

ML1
R9 = R7 &1

ML2
R7 = R7 >> 1

ML3
flag = CMPEQ (R9, 0)

ML4
if flag branch ML6
ML5
R6 = R5 //increment = increment 1 // note one of the ML5s must execute

ML5.5
branch ML8

ML5
R6 = R14 // increment = increment2

ML6
R11 = M // no particular reason that this divide evenly into the length of the sine table
//*****************

// sine loop

IL1
R12 = *R2

IL2
R2 = R2 + R6 //indexed addressing

IL3
*R3++ = R12

IL4
R11= R11 – 1 //decrement bit count

IL5
flag = Compare R11,0

IL6
If flag, branch sine Loop

// END SINE LOOP

//*******************

ML7
R8= R8 – 1 //decrement bit count
ML8
flag = Compare R8,0

ML9
If flag, branch bit Loop

// END BIT LOOP

//*******************

OL3
R4= R4 – 1 //decrement word count
OL4
flag = Compare R4,0

OL5
If flag, branch word Loop

// END WORD LOOP

//*******************

//Restore stuff

11
(instruction to reset addressing mode)

12
(instruction to reset buffer settings)
13
(instruction to branch back)
22.2 Raw Operations

	Class
	Equation

	Raw
	13+5*N+9.5*N*16 + 6*M*N*16

	Memory
	N+2*M*N*16

	Multiplication
	0

	ALU
	13+4*N+9.5*N*16+4*M*N*16

22.3 Impact of Specialized Instructions

	Instruction
	Impact
	Modifier Equation

	BDEC
	OL3,4,ML7,8, IL4,5 eliminated
	(ALU) -2*(N+N*16+M*N*16)

	BPOS
	OL4,ML3,8, IL5 eliminated
	(ALU) –(N+2*N*16+M*N*16)

	ZOL
	OL3-5,ML7-9, IL4-6 eliminated
	(ALU) -3*(N+N*16+M*N*16)

	COND_EXEC
	ML5.5 eliminated (that’s the effect at least)
	(ALU) -0.5*N

	EXTRACT
	ML2 eliminated
	(ALU) -16*N

	INDEX
	IL2 eliminated
	(ALU) -M*16*N

	MEM2
	MEM operations cut in half
	(MEM) - (N+2*M*N*16)/2

	MEM4
	MEM operations cut to quarter
	(MEM) - 3*(N+2*M*N*16)/4

	NOREG
	MEM operations eliminated
	(MEM) - (N+2*M*N*16)

22.4 Synergistic Modifiers

	Modifiers
	Impact
	Modifier Equation

	BDEC, ZOL
	OL3,4,ML7,8, IL4,5 added back
	(ALU) target + 2*(M*16*N + 16*N*+N)

	BPOS, BDEC
	OL4,ML8, IL5 added back
	(ALU) target + (M*16*N + 16*N*+N)

	BPOS, ZOL
	OL4,ML8, IL5 added back
	(ALU) target + (M*16*N + 16*N*+N)

	BPOS, BDEC, ZOL
	OL4,ML8, IL5 eliminated (again)
	(ALU) target - (M*16*N + 16*N*+N)

	MEM2, NOREG
	MEM2 effect undone
	(MEM) target +(N+2*M*N*16)/2

	MEM4, NOREG
	MEM4 effect undone
	(MEM) target + 3*(N+2*M*N*16)/4

23 BFSK Demodulator

This component represents the implementation of a noncoherent block binary frequency shift keying (BFSK) demodulator. This is done by passing the received signal through two filters tuned to the two frequencies with the output of one filter subtracted from another. This would then need to be passed through a symbol-synchronization circuit to create actual output samples. This in turn should be passed through the BPSK demodulator defined previously to create bits and packed words. Note that because this is a block operation, we’re assuming alignment occurs external to this procedure.
23.1 Pseudocode

Parameters: N (# samples)

 Filt_length (filter length)

Requires: Circular buffering (for filtering)

BFSK_decode(signal, coef1, coef2, output_buffer, N, filt_length)

//Move input parameters to local registers
1
(instruction to store previous settings)

2
(instruction to store pervious settings)
3
(instruction to store previous settings)

4
(instruction to store pervious settings)
5
(instruction to turn on circ buff) (for coef1)
6
(instruction to set buffer length)

7
(instruction to turn on circ buff) (for coef2)
8
(instruction to set buffer length)

//preceding eliminates need to reset R2, R3 pointers
9
R1 = signal

10
R2 = coef1

11
R3 = coef2

12
R4 = N
13
R10 = output_buffer

//OUTER LOOP

//Set up FILTERS

OL1
acc1 = 0

OL2
acc2 = 0

OL3
R9 = filt_length //hard coded
/
//Inner Loop (Filters)
IL1
R4 = *R1++ //data
IL2
R5 = *R2++ //filt1
IL3
R6 = R5 * R4

IL4
acc1 = acc1 + R6

IL5
R5 = *R3++ //filt2
IL6
R6 = R5 * R4

IL7
acc2 = acc2 + R6
IL8
R9 = R9 – 1 //decrement block count

IL9
flag = Compare R9,0

IL10
If flag, branch inner Loop

//END FILTERS LOOP
OL4
R11 = acc1 – acc2

OL5
*R10++ = R11

OL5
R1 = R1 – filt_length-1 //scaled as need be for word size

OL6
R4 = R4 – 1 //decrement block count
OL7
flag = Compare R4,0

OL8
If flag, branch Loop

// END WORD LOOP

//*******************

//Restore stuff

14
(instruction to branch back)
23.2 Raw Operations

	Class
	Equation

	Raw
	14 + N*8 + N*filt_length*10

	Memory
	N +3*filt_length*N

	Multiplication
	2*filt_length*N

	ALU
	14 + N*7 + 5*N*filt_length

23.3 Impact of Specialized Instructions

	Instruction
	Impact
	Modifier Equation

	BDEC
	OL6,7,IL8,9 eliminated
	(ALU) -2*(N+N*filt_length)

	BPOS
	OL7, IL9 eliminated
	(ALU) –(N+N*filt_length)

	ZOL
	OL6-8,IL8-10 eliminated
	(ALU) -3*(N+N*filt_length)

	MAC
	IL4,7 eliminated
	(ALU) -2*N*filt_length

	MEM2
	MEM operations cut in half
	(MEM) - (N +3*filt_length*N)/2

	MEM4
	MEM operations cut to quarter
	(MEM) - 3*(N +3*filt_length*N)/4

	NOREG
	MEM operations eliminated
	(MEM) - (N +3*filt_length*N)

23.4 Synergistic Modifiers

	Modifiers
	Impact
	Modifier Equation

	BDEC, ZOL
	OL6,7, IL8,9 added back
	(ALU) target + 2*(N+N*filt_length)

	BPOS, BDEC
	OL7, IL9 added back
	(ALU) target + (N+N*filt_length)

	BPOS, ZOL
	OL7, IL9 added back
	(ALU) target + (N+N*filt_length)

	BPOS, BDEC, ZOL
	OL7, IL9 eliminated (again)
	(ALU) target - (N+N*filt_length)

	MEM2, NOREG
	MEM2 effect undone
	(MEM) target +(N +3*filt_length*N)/2

	MEM4, NOREG
	MEM4 effect undone
	(MEM) target + 3*(N +3*filt_length*N)/4

24 16-QAM Modulator

This component represents the implementation of a 16-QAM modulator. It takes in 16-bit words and maps this to I and Q values. An additional routine would be needed to modulate these I and Q values onto a carrier.
24.1 Pseudocode

Parameters: N (# words)

Requires:

16_QAM_mod(signal, out_I, out_Q, LUT_real, LUT_imag, length)

//Move input parameters to local registers
1
R1 = signal

2
R2 = out_I
3
R3 = out_Q
4
R4 = LUT_real
5
R5 = LUT_imag
6
R10 = length
//OUTER LOOP

OL1
R6 = *R1++

OL2
R11 = 4

//INNER LOOP

IL1
R7 = R6 >> 2 // GET 2 bits
IL2
R7 = R7 & 3

IL3
R8 = R4 + R7 //LUT_REAL
IL4
R9 = *R8
IL5
*R2 = R9 //WRITE OUTPUT

IL6
R7 = R6 >> 2 // GET 2 bits

IL7
R7 = R7 & 3

IL8
R8 = R5 + R7 //LUT_IMAG

IL9
R9 = *R8

IL10
*R3 = R9 //WRITE OUTPUT

IL11
R11 = R11 – 1 //decrement block count

IL12
flag = Compare R4,0

IL13
If flag, branch Inner Loop

//END INNER LOOP
OL3
R10= R10 – 1 //decrement block count
OL4
flag = Compare R4,0

OL5
If flag, branch Loop

// END WORD LOOP

//*******************

//Restore stuff

7
(instruction to branch back)
24.2 Raw Operations

	Class
	Equation

	Raw
	7 + N*5 + N*4*13

	Memory
	N +N*4*4

	Multiplication
	0

	ALU
	7 + N*4 + N*4*9

24.3 Impact of Specialized Instructions

	Instruction
	Impact
	Modifier Equation

	BDEC
	OL3,4,IL11,12 eliminated
	(ALU) -2*(N + 4*N)

	BPOS
	OL4, IL12 eliminated
	(ALU) -(N + 4*N)

	ZOL
	OL3-5,IL11-13 eliminated
	(ALU) -3*(N + 4*N)

	EXTRACT
	IL1,6 eliminated
	(ALU) -2*4*N

	INDEX
	IL3,8 eliminated
	(ALU) -2*4*N

	MEM2
	MEM operations cut in half
	(MEM) - (N +N*4*4)/2

	MEM4
	MEM operations cut to quarter
	(MEM) - 3*(N +N*4*4)/4

	NOREG
	MEM operations eliminated
	(MEM) - (N +N*4*4)

24.4 Synergistic Modifiers

	Modifiers
	Impact
	Modifier Equation

	BDEC, ZOL
	OL3,4,IL11,12 added back
	(ALU) target + 2*(N + 4*N)

	BPOS, BDEC
	OL4,4,IL12 added back
	(ALU) target + (N + 4*N)

	BPOS, ZOL
	OL4,4,IL12 added back
	(ALU) target + (N + 4*N)

	BPOS, BDEC, ZOL
	OL4,4,IL12 re-elimianted
	(ALU) target - (N + 4*N)

	MEM2, NOREG
	MEM2 effect undone
	(MEM) target +(N +N*4*4)/2

	MEM4, NOREG
	MEM4 effect undone
	(MEM) target + 3*(N +N*4*4)/4

25 16-QAM Demodulator

This component represents the implementation of a 16-QAM demodulator. It takes in I/Q samples, maps these to bits and packs these into 16-bit words. Note separate processes would be needed for carrier recovery, channel equalization, and symbol synchronization.
25.1 Pseudocode

Parameters: N (# samples)
16_QAM_demod(signal_I, signal_Q, out, length)

//Move input parameters to local registers
1
R1 = signal_I

2
R2 = signal_Q

3
R3 = out

4
R4 = length

// OUTER LOOP (16 samples per pass)
OL1
R5 = 0
OL2
R11 = 4 // assuming 16-bit words
//INNER LOOP (4 samples per pass)
//I

IL1
R6 = *R1++

IL2
flag = compare R6 < 0

IL3
If flag branch IL5

IL3.5
R5 = R5 + 1
IL4
R5 = R5 << 1

IL5
R6 = abs(R6)

IL6
flag = compare R6 < thresh

IL7
If flag branch IL8
IL7.5
R5 = R5 + 1

IL8
R5 = R5 << 1

//Q

IL9
R6 = *R2++

IL10
flag = compare R6 < 0

IL11
If flag branch IL12
IL11.5
R5 = R5 + 1

IL12
R5 = R5 << 1

IL13
R6 = abs(R6)

IL14
flag = compare R6 < thresh

IL15
If flag branch IL16
IL15.5
R5 = R5 + 1

IL16
R5 = R5 << 1

IL17
R11 = R11 – 1 //decrement block count

IL18
flag = Compare R11,0

IL19
If flag, branch Inner Loop

// END INNER LOOP

OL3
*R3++ = R5 //store output word

OL4
R10= R10 – 1 //decrement block count
OL5
flag = Compare R4,0

OL6
If flag, branch Loop

// END OUTER LOOP

//*******************

//Restore stuff

5
(instruction to branch back)

25.2 Raw Operations

	Class
	Equation

	Raw
	5 + N*6/16 + N*(19 + 4*0.5)/4

	Memory
	N/16 + N*(2)/4

	Multiplication
	0

	ALU
	5 + N*5/16 + N*4*19/4

25.3 Impact of Specialized Instructions

	Instruction
	Impact
	Modifier Equation

	BDEC
	OL4,5,IL17,18 eliminated
	(ALU) -2*(N/16+ N/4)

	BPOS
	OL5, IL3,7,11,15,18 eliminated
	(ALU) –(N/16 + 5*N/4)

	ZOL
	OL4-5,IL17-19 eliminated
	(ALU) -3*(N/16 + N/4)

	COND_EXEC
	IL 3.5,7.5,11.5,15.5 eliminated
	(ALU) –N/2

	VSL
	IL4,8,12,16,3.5,7.5,11.5,15.5
	(ALU) –N*(4+4*0.5)/4

	MEM2
	MEM operations cut in half
	(MEM) – (N/16 +N/2)/2

	MEM4
	MEM operations cut to quarter
	(MEM) – 3*(N/16 +N/2)/4

	NOREG
	MEM operations eliminated
	(MEM) – (N/16 +N/2)

25.4 Synergistic Modifiers

	Modifiers
	Impact
	Modifier Equation

	BDEC, ZOL
	OL4,5,IL17,18 added back
	(ALU) target + 2*(N/16+ N/4)

	BPOS, BDEC
	OL5,IL18 added back
	(ALU) target + (N/16+ N/4)

	BPOS, ZOL
	OL5,IL18 added back
	(ALU) target + (N/16+ N/4)

	BPOS, BDEC, ZOL
	OL5,IL18 eliminated (again)
	(ALU) target - (N/16+ N/4)

	COND_EXEC, VSL
	IL 3.5,7.5,11.5,15.5 added back
	(ALU) target + N/2

	MEM2, NOREG
	MEM2 effect undone
	(MEM) target +(N/16 +N/2)/2

	MEM4, NOREG
	MEM4 effect undone
	(MEM) target + 3*(N/16 +N/2)/4

� The specific tradeoff is an expected 7.5 * 8 or 60 cycles for specifying # of 16-bit words versus an added 2 cycles per bit (actually a little bit more) for specifying # bits because of the need for extra loop control.

_1259745739.unknown

